Skip to main content
Log in

A Comparison of Fiber Based Material Laws for Myocardial Scar

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The mechanics of most soft tissues in the human body are determined by the organization of their collagen fibers. Predicting how mechanics will change during growth and remodeling of those tissues requires constitutive laws that account for the density and dispersion of collagen fibers. Post-infarction scar in the heart, a mechanically and structurally complex material, does not yet have a validated fiber-based constitutive model. In this study, we tested four different constitutive laws employing exponential or polynomial strain-energy functions and accounting for either mean fiber orientation alone or the details of the fiber distribution about that mean. We quantified the goodness of fit of each law to mechanical testing data from 6-week-old myocardial scar in the rat using both sum of squared error (SSE) and the Akaike Information Criterion (AIC) to account for differences in the number of material parameters within the constitutive laws. We then compared their ability to prospectively predict the mechanics of independent myocardial scar samples from other time points during healing. Our analysis suggests that a constitutive law with a polynomial form that incorporates detailed information about collagen fiber distribution using a structure tensor provides excellent fits with just two parameters and reasonable predictions of myocardial scar mechanics from measured structure alone in scars containing sufficiently high collagen content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Holmes, J.W., Nuñez, J.A., Covell, J.W.: Functional implications of myocardial scar structure. Am. J. Physiol., Heart Circ. Physiol. 272, 2123–2130 (1997). https://doi.org/10.1152/ajpheart.1997.272.5.h2123

    Article  Google Scholar 

  2. Fomovsky, G.M., Holmes, J.W.: Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat. Am. J. Physiol., Heart Circ. Physiol. 298, 221–228 (2010). https://doi.org/10.1152/ajpheart.00495.2009

    Article  Google Scholar 

  3. Richardson, W., Clarke, S.A., Quinn, T., Holmes, J.W.: Physiological implications of myocardial scar structure. Compr. Physiol. 5, 1877–1909 (2016). https://doi.org/10.1002/cphy.c140067.Physiological

    Article  Google Scholar 

  4. Richardson, W.J., Holmes, J.W.: Why is infarct expansion such an elusive therapeutic target? J. Cardiovasc. Transl. Res. 8, 421–430 (2015). https://doi.org/10.1007/s12265-015-9652-2

    Article  Google Scholar 

  5. Weir, R.A.P., McMurray, J.J.V., Velazquez, E.J.: Epidemiology of heart failure and left ventricular systolic dysfunction after acute myocardial infarction: prevalence, clinical characteristics, and prognostic importance. Am. J. Cardiol. 97, 13–25 (2006). https://doi.org/10.1016/j.amjcard.2006.03.005

    Article  Google Scholar 

  6. Rouillard, A.D., Holmes, J.W.: Coupled agent-based and finite-element models for predicting scar structure following myocardial infarction. Prog. Biophys. Mol. Biol. 115, 235–243 (2014). https://doi.org/10.1016/j.pbiomolbio.2014.06.010

    Article  Google Scholar 

  7. Fomovsky, G.M., Rouillard, A.D., Holmes, J.W.: Regional mechanics determine collagen fiber structure in healing myocardial infarcts. J. Mol. Cell. Cardiol. 52, 1083–1090 (2012). https://doi.org/10.1016/j.yjmcc.2012.02.012

    Article  Google Scholar 

  8. Caggiano, L.R., Lee, J., Holmes, J.W.: Surgical reinforcement alters collagen alignment and turnover in healing myocardial infarcts. Am. J. Physiol. Circ. Physiol. 315, 1041–1050 (2018). https://doi.org/10.1152/ajpheart.00088.2018

    Article  Google Scholar 

  9. Guccione, J., Mcculloch, A., Waldman, L.: Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Eng. 118, 262 (1996). https://doi.org/10.1115/1.2795971

    Article  Google Scholar 

  10. Costa, K.D., Holmes, J.W., McCulloch, A.D.: Modelling cardiac mechanical properties. Philos. Trans. A. Math. Phys. Eng. Sci. 359, 1233–1250 (2001)

    Article  ADS  Google Scholar 

  11. Humphrey, J., Strumpf, R., Yin, F.: Determination of a constitutive relation for passive myocardium: I. A new functional form. J. Biomech. Eng. 112, 333–339 (1990)

    Article  Google Scholar 

  12. Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 3445–3475 (2009). https://doi.org/10.1098/rsta.2009.0091

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Billiar, K.L., Sacks, M.S.: Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: Part II—A structural constitutive model. J. Biomech. Eng. 122, 327–335 (2000). https://doi.org/10.1115/1.1287158

    Article  Google Scholar 

  14. Guccione, J.M., Moonly, S.M., Moustakidis, P., Costa, K.D., Moulton, M.J., Ratcliffe, M.B., Pasque, M.K.: Mechanism underlying mechanical dysfunction in the border zone of left ventricular aneurysm: a finite element model study. Ann. Thorac. Surg. 71, 654–662 (2001). https://doi.org/10.1016/S0003-4975(00)02338-9

    Article  Google Scholar 

  15. Dang, A.B.C., Guccione, J.M., Zhang, P., Wallace, A.W., Gorman, R.C., Gorman, J.H., Ratcliffe, M.B.: Effect of ventricular size and patch stiffness in surgical anterior ventricular restoration: a finite element model study. Ann. Thorac. Surg. 79, 185–193 (2005). https://doi.org/10.1016/j.athoracsur.2004.06.007

    Article  Google Scholar 

  16. Sun, K., Stander, N., Jhun, C.S., Zhang, Z., Suzuki, T., Wang, G.Y., Saeed, M., Wallace, A.W., Tseng, E.E., Baker, A.J., Saloner, D., Einstein, D.R., Ratcliffe, M.B., Guccione, J.M.: A computationally efficient formal optimization of regional myocardial contractility in a sheep with left ventricular aneurysm. J. Biomech. Eng. 131, 1–10 (2009). https://doi.org/10.1115/1.3148464

    Article  Google Scholar 

  17. Walker, J.C., Ratcliffe, M.B., Zhang, P., Wallace, A.W., Fata, B., Hsu, E.W., Saloner, D., Guccione, J.M.: MRI-based finite-element analysis of left ventricular aneurysm. Am. J. Physiol., Heart Circ. Physiol. 289, 692–700 (2005). https://doi.org/10.1152/ajpheart.01226.2004

    Article  Google Scholar 

  18. Wall, S.T., Walker, J.C., Healy, K.E., Ratcliffe, M.B., Guccione, J.M.: Theoretical impact of the injection of material into the myocardium: a finite element model simulation. Circulation 114, 2627–2635 (2006). https://doi.org/10.1161/CIRCULATIONAHA.106.657270

    Article  Google Scholar 

  19. Gupta, K.B., Ratcliffe, M.B., Fallert, M.A., Edmunds, L.H., Bogen, D.K.: Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation. Circulation 89, 2315–2326 (1994). https://doi.org/10.1161/01.CIR.89.5.2315

    Article  Google Scholar 

  20. Sirry, M.S., Butler, J.R., Patnaik, S.S., Brazile, B., Bertucci, R., Claude, A., McLaughlin, R., Davies, N.H., Liao, J., Franz, T.: Infarcted rat myocardium: data from biaxial tensile and uniaxial compressive testing and analysis of collagen fibre orientation. Data Br. 8, 1338–1343 (2016). https://doi.org/10.1016/j.dib.2016.08.005

    Article  Google Scholar 

  21. Brazile, B.L., Butler, J.R., Patnaik, S.S., Claude, A., Prabhu, R., Williams, L.N., Perez, K.L., Nguyen, K.T., Zhang, G., Bajona, P., Peltz, M., Yang, Y., Hong, Y., Liao, J.: Biomechanical properties of acellular scar ECM during the acute to chronic stages of myocardial infarction. J. Mech. Behav. Biomed. Mater. 116, 104342 (2021). https://doi.org/10.1016/j.jmbbm.2021.104342

    Article  Google Scholar 

  22. Whittaker, P., Kloner, R.A., Boughner, D.R., Pickering, J.G.: Quantitative assessment of myocardial collagen with picrosirius red staining and circularly polarized light. Basic Res. Cardiol. 89, 397–410 (1994). https://doi.org/10.1007/BF00788278

    Article  Google Scholar 

  23. Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006). https://doi.org/10.1098/rsif.2005.0073

    Article  Google Scholar 

  24. Schmid, H., Nash, M.P., Young, A.A., Hunter, P.J.: Myocardial material parameter estimation - a comparative study for simple shear. J. Biomech. Eng. 128, 742–750 (2006). https://doi.org/10.1115/1.2244576

    Article  Google Scholar 

  25. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Parzen, E., Tanabe, K., Kitagawa, G. (eds.) Selected Papers of Hirotugu Akaike, pp. 267–281. Springer, New York (1973)

    Google Scholar 

  26. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974). https://doi.org/10.1109/TAC.1974.1100705

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Holmes, J.W., Borg, T.K., Covell, J.W.: Structure and mechanics of healing myocardial infarcts. Annu. Rev. Biomed. Eng. 7, 223–253 (2005). https://doi.org/10.1146/annurev.bioeng.7.060804.100453

    Article  Google Scholar 

  28. Fomovsky, G.M., Clark, S.A., Parker, K.M., Ailawadi, G., Holmes, J.W.: Anisotropic reinforcement of acute anteroapical infarcts improves pump function. Circ. Heart Fail. 5, 515–522 (2012). https://doi.org/10.1161/CIRCHEARTFAILURE.111.965731

    Article  Google Scholar 

  29. Holmes, J.W., Laksman, Z., Gepstein, L.: Making better scar: emerging approaches for modifying mechanical and electrical properties following infarction and ablation. Prog. Biophys. Mol. Biol. 120, 134–148 (2016). https://doi.org/10.1016/j.pbiomolbio.2015.11.002

    Article  Google Scholar 

  30. Clarke, S.A., Richardson, W.J., Holmes, J.W.: Modifying the mechanics of healing infarcts: is better the enemy of good? J. Mol. Cell. Cardiol. 93, 115–124 (2016). https://doi.org/10.1016/j.yjmcc.2015.11.028

    Article  Google Scholar 

  31. Sacks, M.S.: Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J. Biomech. Eng. 125, 280–287 (2003). https://doi.org/10.1115/1.1544508

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants R01 HL-116449 and R01 EB-137755.

Funding

This study was funded by NIH R01 HL-116449 and R01 EB-137755.

Author information

Authors and Affiliations

Authors

Contributions

Study design, data collection, and analysis were performed by Laura R. Caggiano and Jeffrey W. Holmes. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jeffrey W. Holmes.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

All experiments were approved by the University of Virginia Institutional Animal Care and Use Committee.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caggiano, L.R., Holmes, J.W. A Comparison of Fiber Based Material Laws for Myocardial Scar. J Elast 145, 321–337 (2021). https://doi.org/10.1007/s10659-021-09845-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-021-09845-5

Keywords

Mathematics Subject Classification

Navigation