Skip to main content
Log in

Genetic diversity and population genetic structure of Neillia incisa in China: implications for genetic conservation

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

We analyzed the genetic diversity and population genetic structure of Neillia incisa (Thunb.) Zabel using EST-SSR markers.

Abstract

Neillia incisa (Thunb.) Zabel is an undomesticated plant species which is distributed along the coastal areas of East Asia. N. incisa has rarely been planted in cities despite its potential usefulness in removing particulate air pollution. Our study utilized EST-SSR markers to investigate the genetic diversity of 122 wild N. incisa individuals from five populations, including Anshan (AS), Zhuanghe (ZH), Changhai (CH), Kunyu (KU) and Laoshan (LS). All indexes measured indicated moderate polymorphism. The CH population was found to have the highest genetic diversity, while the AS population was observed to have the lowest. The average genetic differentiation coefficient (Fst) of the five N. incisa populations was found to be 0.2075. Analysis of molecular variance revealed that the genetic variation observed among various populations was only 16.99% of the total variation, while the genetic variation within populations accounted for 83.01% of the total variation. Principal coordinate analysis, unweighted pair group with arithmetic mean clustering and genetic structure analysis revealed that the five N. incisa populations could be differentiated into three groups. ZH was found to group with CH, LS grouped with KU and AS formed its own cluster. The results of this study provide a preliminary genetic basis for the use and conservation of N. incisa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aikawa S-I, Hori Y (2006) Effect of a multi-stemmed growth form on matter production of an understory shrub, Stephanandra incisa. Plant Species Biol 21:31–39

    Article  Google Scholar 

  • Earl DA, Vonholdt BM (2012) Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Felsenstein J (1984) Distance methods for inferring phylogenies: a justification. Evolution 38:16–24

    Article  Google Scholar 

  • Fregene MA, Suarez M, Mkumbira J et al (2003) Simple sequence repeat marker diversity in cassava landraces: genetic diversity and differentiation in an asexually propagated crop. Theor Appl Genet 107:1083–1093

    Article  CAS  Google Scholar 

  • Gichira AW, Li Z-Z, Saina JK et al (2017) Demographic history and population genetic structure of Hagenia abyssinica (Rosaceae), a tropical tree endemic to the Ethiopian highlands and eastern African mountains. Tree Genetics Genomes. https://doi.org/10.1007/s11295-017-1156-6

    Article  Google Scholar 

  • Gillies ACM, Navarro C, Lowe AJ et al (1999) Genetic diversity in Mesoamerican populations of mahogany (Swietenia macrophylla), assessed using RAPDs. Heredity 83:722–732

    Article  Google Scholar 

  • Hedrick PW (2014) Conservation genetics and the persistence and translocation of small populations: Bighorn sheep populations as examples. Anim Conserv 17:106–114

    Article  Google Scholar 

  • Hou XG, Guo DL, Wang J (2011) Development and characterization of EST-SSR markers in Paeonia suffruticosa (Paeoniaceae). Am J Bot 98:e303

    Article  Google Scholar 

  • Huang Y, Zhang JL, Liu QC et al (2012) Research on shade tolerance of Stephanandra incisa. Chin Agric Sci Bull 28:77–81

    Google Scholar 

  • Jantova S, Nagy M, Ruz̆Eková L et al (2001) Cytotoxic effects of plant extracts from the families Fabaceae, Oleaceae, Philadelphaceae, Rosaceae and Staphyleaceae. Rosaceae and Staphyleaceae 15:22–25

    CAS  Google Scholar 

  • Lendvay B, Höhn M, Brodbeck S et al (2014) Genetic structure in Pinus cembra from the Carpathian Mountains inferred from nuclear and chloroplast microsatellites confirms post-glacial range contraction and identifies introduced individuals. Tree Genet Genomes 10:1419–1433

    Article  Google Scholar 

  • Li X, Li M, Hou L et al (2018) De novo transcriptome assembly and population genetic analyses for an endangered Chinese endemic Acer miaotaiense (Aceraceae). Genes 9:378

    Article  Google Scholar 

  • Liu J, Liu HB, Ma LY et al (2014) A Chinese jujube (Ziziphus jujuba Mill.) fruit-expressed sequence tag (EST) library: annotation and EST-SSR characterization. Sci Hortic 165:99–105

    Article  CAS  Google Scholar 

  • Liu FM, Hong Z, Xu DP et al (2019) genetic diversity of the endangered dalbergia odorifera revealed by SSR markers. Forests 10:225

    Article  Google Scholar 

  • Nagy S, Poczai P, Cernák I et al (2012) An online program to calculate polymorphic information content for molecular genetic studies. Biochem Gentics 50:670–672

    Article  CAS  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Nishitani C, Terakami S, Sawamura Y et al (2009) Development of novel EST-SSR markers derived from Japanese pear (Pyrus pyrifolia). Breed Sci 59:391–400

    Article  CAS  Google Scholar 

  • Oh SH, Potter D (2006) Neillia includes Stephanandra (Rosaceae). Missouri Botanical Garden Press 16:91–95

    Google Scholar 

  • Ortego J, Riordan EC, Gugger PF et al (2012) Influence of environmental heterogeneity on genetic diversity and structure in an endemic southern Californian oak. Mol Ecol 21:3210–3223

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5. Bioinformatics 28:2537–2539

    Article  CAS  Google Scholar 

  • Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Report 15:8–15

    Article  CAS  Google Scholar 

  • Porth I, El-Kassaby YA (2014) Assessment of the genetic diversity in forest tree populations using molecular markers. Diversity 6:283–295

    Article  Google Scholar 

  • Powell W, Morgante M, Andre C et al (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breeding 2:225–238

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of Population Structure Using Multilocus Genotype Data. Genetics 155:945–959

    Article  CAS  Google Scholar 

  • Rahemi A, Fatahi R, Ebadi A et al (2012) Genetic diversity of some wild almonds and related Prunus species revealed by SSR and EST-SSR molecular markers. Plant Syst Evol 298:173–192

    Article  CAS  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc numerical taxonomy and multivariate analysis system. Am Stat 41:330

    Article  Google Scholar 

  • Rottstock T, Kummer V, Fischer M et al (2017) Rapid transgenerational effects in Knautia arvensis in response to plant-community diversity. J Ecol 105:714–725

    Article  CAS  Google Scholar 

  • Sæbø A, Popek R, Nawrot B et al (2012) Plant species differences in particulate matter accumulation on leaf surfaces. Sci Total Environ 427–428:347–354

    Article  Google Scholar 

  • Sebbenn AM, Licona JC, Mostacedo B et al (2017) Gene flow in an overexploited population of Swietenia macrophylla King (meliaceae) in the Bolivian Amazon. Silvae Genet 61:212–220

    Article  Google Scholar 

  • Shiferaw E, Pè ME, Porceddu E et al (2012) Exploring the genetic diversity of Ethiopian grass pea (Lathyrus sativus L.) using EST-SSR markers. Mol Breeding 30:789–797

    Article  CAS  Google Scholar 

  • Stojnić S, Avramidou EV, Fussi B et al (2019) Assessment of Genetic Diversity and Population Genetic Structure of Norway Spruce (Picea abies (L.) Karsten) at Its Southern Lineage in Europe. Implications for Conservation of Forest Genetic Resources. Forests 10:258

    Article  Google Scholar 

  • Viki M, Suman K, Pramod T (2013) SRAP methods revealed high genetic diversity with in populations and high gene flow of Vanda coerulea Griffex Lindl (Blue Vanda), an endangeredorchid species. Genes 519:91–97

    Google Scholar 

  • Wen MF, Wang HY, Xia ZQ et al (2010) Developmenrt of EST-SSR and genomic-SSR markers to assess genetic diversity in Jatropha Curcas L. BMC Res Notes 3:41

    Article  Google Scholar 

  • Wöhrmann T, Guicking D, Khoshbakht K et al (2011) Genetic variability in wild populations of Prunus divaricata Ledeb. in northern Iran evaluated by EST-SSR and genomic SSR marker analysis. Genet Resour Crop Evol 58:1157–1167

    Article  Google Scholar 

  • Xie CT, Cheng CS, Ji DH et al (2009) Characterization, development and exploitation of EST-derived microsatellites in Porphyra haitanensis Chang et Zheng (Bangiales, Rhodophyta). J Appl Phycol 21:367–374

    Article  CAS  Google Scholar 

  • Xu Y, Ma R-C, Xie H et al (2004) Development of SSR markers for the phylogenetic analysis of almond trees from China and the Mediterranean region. Genome 47:1091–1104

    Article  CAS  Google Scholar 

  • Yao LH, Yan ZX, Ying CD et al (2010) Exploitation of Malus EST-SSRs and the utility in evaluationof genetic diversity inMalusandPyrus. Genet Resour Crop Evol 57:841–851

    Article  CAS  Google Scholar 

  • Yeh FC, Ang YRC, Boyle TB et al (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton

    Google Scholar 

  • Zhang Q, Li J, Zhao YB et al (2012) Evaluation of genetic diversity in chinese wild apple species along with apple cultivars using SSR markers. Plant Mol Biol Rep 30:539–546

    Article  CAS  Google Scholar 

  • Zhong T, Zhao G, Lou Y et al (2019) Genetic diversity analysis of Sinojackia microcarpa, a rare tree species endemic in China, based on simple sequence repeat markers. J Forest Res 30:847–854

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Shandong Provincial Major Agricultural Application Technology Innovation Project (LCNZ2016-36); High-level Science Foundation of Qingdao Agricultural University [663/1114306]. We thank the National Forest Genetic Resources Platform (NFGRP) for providing the Neillia incisa resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuiling Wang.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflicts of interest.

Additional information

Communicated by Ignacio Hormaza.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Sun, G., Wang, H. et al. Genetic diversity and population genetic structure of Neillia incisa in China: implications for genetic conservation. Trees 35, 2009–2018 (2021). https://doi.org/10.1007/s00468-021-02168-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-021-02168-x

Keywords

Navigation