Skip to main content
Log in

Foreign-Continuum Absorption in the Wings of IR H2O Bands

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The H2O foreign-continuum absorption in the IR region is considered within the asymptotic line wing theory, where absorption is represented as the sum of the absorption coefficients of individual lines of a special profile at far distances from the line centers. The line profile parameters pertaining to quantum and classical Н2О–N2 interaction potentials are found from fitting the experimental data on absorption in the 4200–5000 cm−1 spectral range and on the temperature dependence of the second virial coefficient. This line profile is used for calculation of the continuum absorption in the 1000–10 000 cm−1 range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, “Water vapour self-continuum and water dimers: 1. Analysis of recent work,” J. Quant. Spectrosc. Radiat. Transfer 112, 1286–1303 (2011).

    Article  ADS  Google Scholar 

  2. K. P. Shine, I. V. Ptashnik, and G. Radel, “The water vapour continuum: Brief history and recent developments,” Surv. Geophys. 33 (3-4), 535–555 (2012).

    Article  ADS  Google Scholar 

  3. J.-M. Hartmann, H. Tran, R. Armante, C. Boulet, A. Campargue, F. Forget, L. Gianfrani, I. Gordon, S. Guerlet, M. Gustafsson, J. T. Hodges, S. Kassi, D. Lisak, F. Thibault, and G. C. Toon, “Recent advances in collisional effects on spectra of molecular gases and their practical consequences,” J. Quant. Spectrosc. Radiat. Transfer 213, 178–227 (2018).

    Article  ADS  Google Scholar 

  4. K. P. Shine, A. Campargue, D. Mondelain, R. A. McPheat, I. V. Ptashnik, and D. Weidmann, “The water vapour continuum in near-infrared windows—current understanding and prospects for its inclusion in spectroscopic databases,” J. Mol. Spectrosc. 327, 193–208 (2016).

    Article  ADS  Google Scholar 

  5. L. Lechevallier, S. Vasilchenko, R. Grilli, D. Mondelain, D. Romanini, and A. Campargue, “The water vapour self-continuum absorption in the infrared atmospheric windows: New laser measurements near 3.3 and 2.0 µm,” Atmos. Meas. Tech. 11, 2159–2171 (2018).

    Article  Google Scholar 

  6. I. Ptashnik, T. E. Klimeshina, A. A. Solodov, and A. A. Vigasin, “Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 µm bands,” J. Quant. Spectrosc. Radiat. Transfer 228, 97–05 (2019).

    Article  ADS  Google Scholar 

  7. T. Odintsova, M. Yu. Tretyakov, A. O. Zibarova, O. Pirali, P. Roy, and A. Campargue, “Far-infrared self-continuum absorption of H2 16O and H2 18O (15–500 cm–1),” J. Quant. Spectrosc. Radiat. Transfer 227, 1900–1909 (2019).

    Article  Google Scholar 

  8. I. V. Ptashnik, T. M. Petrova, Yu. N. Ponomarev, K. P. Shine, A. A. Solodov, and A. M. Solodov, “Near-infrared water vapour self-continuum at close to room temperature,” J. Quant. Spectrosc. Radiat. Transfer 120, 23–25 (2013).

    Article  ADS  Google Scholar 

  9. T. E. Klimeshina and O. B. Rodimova, “Calculation of H2O continuum absorption in IR-region based on Burch’s measurements,” Opt. Atmos. Okeana 32 (8), 628–632 (2019).

    Google Scholar 

  10. D. E. Burch and D. A. Gryvnak, “Continuum absorption by H2O vapor in the infrared and millimeter regions,” in Atmospheric Water Vapor, Ed. by A. Deepak, T.D. Wilkerson, and L.H. Ruhnke (Academic Press, New York; London; Toronto; Sydney; San Francisco, 1980).

    Google Scholar 

  11. D. E. Burch, “Continuum absorption by atmospheric H2O,” Proc. SPIE—Int. Soc. Opt. Eng. 277, 28–39 (1981).

  12. D. E. Burch and R. L. Alt, Continuum Absorption by H 2 O in the 700–1200 cm –1 and 2400–2800 cm –1 Windows. Report AFGL-TR-84-0128 (1984).

  13. S. Vasilchenko, A. Campargue, S. Kassi, and D. Mondelain, “The water vapour self- and foreign-continua in the 1.6 mm and 2.3 mm windows by CRDS at room temperature,” J. Geophys. Res.: Atmos. 227, 230–238 (2019).

    Google Scholar 

  14. D. Mondelain, S. Vasilchenko, P. Cermak, S. Kassi, and A. Campargue, “The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 µm,” Phys. Chem. Chem. Phys. 17, 17762–17770 (2015).

    Article  Google Scholar 

  15. D. E. Burch, Absorption by H2O in Narrow Windows between 3000–4200 cm –1 . Report AFGL-TR-85-0036 (1985).

  16. Y. I. Baranov, “The continuum absorption in H2O + N2 mixtures in the 2000–3250 cm–1 spectral region at temperatures from 326 to 363 K,” J. Quant. Spectrosc. Radiat. Transfer 112, 2281–2286 (2011).

    Article  ADS  Google Scholar 

  17. I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements,” Philos. Trans. R. Soc. A 370, 2557–2577 (2012).

    Article  ADS  Google Scholar 

  18. D. E. Burch, D. A. Gryvnak, R. R. Patty, and Ch. E. Bartky, “Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision-broadened CO0 lines,” J. Opt. Soc. Am. 59 (3), 267–280 (1969).

    Article  ADS  Google Scholar 

  19. S. A. Clough, F. X. Kneizys, and R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res 23 (3-4), 229–241 (1989).

    Article  Google Scholar 

  20. Q. Ma, R. H. Tipping, and C. Leforestier, “Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines,” J. Chem. Phys. 128 (12), 124313 (2008).

    Article  ADS  Google Scholar 

  21. L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Spectral Line Profile and Molecular Interaction (Nauka, Novosibirsk, 1986) [in Russian].

    MATH  Google Scholar 

  22. S. D. Tvorogov and O. B. Rodimova, Collisional Profile of Spectral Lines (Publishing House of IAO SB RAS, Tomsk, 2013) [in Russian.

  23. T. E. Klimeshina, Yu. V. Bogdanova, and O. B. Rodimova, “Continuum absorption by water vapor in the 8–12 and 3–5 mm atmospheric transparency windows,” Atmos. Oceanic Opt. 25 (1), 71–76 (2012).

    Article  Google Scholar 

  24. A. S. Tulegenov, R. J. Wheatley, M. P. Hodges, and A. H. Harvey, “Intermolecular potential and second virial coefficient of the water–nitrogen complex,” J. Chem. Phys. 126 (2007).

  25. A. Brown and R. H. Tipping, “Collision-induced absorption in dipolar molecule—homonuclear diatomic pairs,” in Proc. NATO, Ed. by C. Camy-Peyret and A.A. Vigasin (Kluwer, Dordrecht, 2003).

  26. D. Mondelain, S. Vasilchenko, P. Cermak, S. Kassi, and A. Campargue, “The CO2 absorption spectrum in the 2.3 µm transparency window by high sensitivity CRDS: (II) Self-absorption continuum,” J. Quant. Spectrosc. Radiat. Transfer 187, 38–43 (2017).

    Article  ADS  Google Scholar 

  27. M. V. Tonkov, N. N. Filippov, V. V. Bertsev, J. P. Bouanich, Van-Thanh Nguyen, C. Brodbeck, J. M. Hartmann, C. Boulet, F. Thibault, and R. Le Doucen, “Measurements and empirical modeling of pure CO2 absorption in the 2.3-µm region at room temperature: Far wings, allowed and collision-induced bands,” Appl. Opt. 35 (24), 4863–4870 (1996).

    Article  ADS  Google Scholar 

  28. R. H. Tipping and Q. Ma, “Theory of the water vapor continuum and validations,” Atmos. Res. 36, 69–94 (1995).

    Article  Google Scholar 

  29. O. B. Rodimova, “Carbon dioxide and water vapor continuum absorption in the infrared spectral region,” Atmos. Oceanic Opt. 31 (6), 564–569 (2018).

    Article  Google Scholar 

  30. M. Birk, G. Wagner, J. Loos, and K. P. Shine, “3 µm water vapor self- and foreign-continuum: New method for determination and new insights into the self-continuum,” J. Quant. Spectrosc. Radiat. Transfer 253, 107134–1 (2020).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to I.V. Ptashnik for useful discussions.

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. B. Rodimova or T. E. Klimeshina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodimova, O.B., Klimeshina, T.E. Foreign-Continuum Absorption in the Wings of IR H2O Bands. Atmos Ocean Opt 34, 190–197 (2021). https://doi.org/10.1134/S1024856021030131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021030131

Keywords:

Navigation