Skip to main content
Log in

Examination of methane hydrate formation by the use of dual impeller combinations

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The kinetics of methane gas hydrates formation was obtained by different dual impeller (DI) experiments with full baffle (FB) at 42.5 bar pressure and 2 °C temperature. There were 18 (dual and dual mixed) experiments by the use of pitched blade turbine upward trending (PBTU), pitched blade turbine downward trending (PBTD), rushton turbine (RT) and new impeller design trapezoid turbine in upward trending and down ward trending, TTU and TTD respectively. There were estimations of induction time, duration of hydrate formation, rate of hydrate formation, hydrate formation rate constant, hydrate yield and power consumption. The experiments with radial flow in the upper part of shaft showed better outcomes compared to other combinations for dual impellers in hydrate yield, rate of hydrate formation and hydrate formation rate constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Englezos P (1993) Clathrate hydrates. Ind Eng Chem Res 32(7):1251–1274

    Article  CAS  Google Scholar 

  2. Sloan ED, Koh C (2007) Clathrate hydrates of natural gases. CRC Press, Boca Raton

    Book  Google Scholar 

  3. Sloan ED, Koh CA (2008) Clathrate hydrates of natural gases, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  4. Merey S, Longinos SN (2018) Investigation of gas seepages in Thessaloniki mud volcano in the Mediterranean Sea. J Petrol Sci Eng 168:81–97. https://doi.org/10.1016/j.petrol.2018.05.014

    Article  CAS  Google Scholar 

  5. Longinos SN, Longinou DD, Achinas S (2020) Natural gas hydrates: possible environmental issues. In: Contemporary environmental issues and challenges in era of climate change. Springer, Singapore, pp. 277–293

  6. Gudmundsson JS, Parlaktuna M, Khokhar AA (1994) Storage of natural gas as frozen hydrate. SPE Prod Facil 9(01):69–73

    Article  CAS  Google Scholar 

  7. Gudmundsson J, Borrehaug A (1996) Frozen hydrate for transport of natural gas. In: NGH 96: 2nd international conference on natural gaz hydrates, Toulouse, pp 415–422

  8. Shirota H, Aya I, Namie S, Bollavaram P, Turner D, Sloan ED (2002) Measurement of methane hydrate dissociation for application to natural gas storage and transportation. In: Proceedings of the 4th international conference on gas hydrates, Yokohama, Japan, pp 972–977

  9. Nakajima Y, Takaoki T, Ohgaki K, Ota S (2002) Use of hydrate pellets for transportation of natural gas-II-proposition of natural gas transportation in form of hydrate pellets. In: Proceedings of the 4th international conference on gas hydrates, pp 987–990

  10. Kanda, H (2006) Economic study on natural gas transportation with natural gas hydrate (NGH) pellets. In: 23rd world gas conference, Amsterdam

  11. Sloan ED (2003) Fundamental principles and applications of natural gas hydrates. Nature 426(6964):353–359

    Article  CAS  Google Scholar 

  12. Strobel TA, Hester KC, Koh CA, Sum AK, Sloan Jr ED (2009) Properties of the clathrates of hydrogen and developments in their applicability for hydrogen storage. Chem Phys Lett 478(4–6):97–109

    Article  CAS  Google Scholar 

  13. Huo Z, Hester K, Sloan ED Jr, Miller KT (2003) Methane hydrate nonstoichiometry and phase diagram. AIChE J 49(5):1300–1306

    Article  CAS  Google Scholar 

  14. Englezos P, Kalogerakis N, Dholabhai PD, Bishnoi PR (1987) Kinetics of gas hydrate formation from mixtures of methane and ethane. Chem Eng Sci 42(11):2659–2666

    Article  CAS  Google Scholar 

  15. Lee HJ, Lee JD, Linga P, Englezos P, Kim YS, Lee MS, Do Kim Y (2010) Gas hydrate formation process for pre-combustion capture of carbon dioxide. Energy 35(6):2729–2733

    Article  CAS  Google Scholar 

  16. Servio P, Englezos P (2001) Effect of temperature and pressure on the solubility of carbon dioxide in water in the presence of gas hydrate. Fluid Phase Equilib 190(1–2):127–134

    Article  CAS  Google Scholar 

  17. Veluswamy HP, Kumar A, Kumar R, Linga P (2017) An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application. Appl Energy 188:190–199

    Article  CAS  Google Scholar 

  18. Khandelwal H, Qureshi MF, Zheng J, Venkataraman P, Barckholtz TA, Mhadeshwar AB, Linga P (2020) Effect of l-tryptophan in promoting the kinetics of carbon dioxide hydrate formation. Energy Fuels 35(1):649–658

    Article  Google Scholar 

  19. Bhattacharjee G, Linga P (2021) Amino acids as kinetic promoters for gas hydrate applications: a mini review. Energy Fuels 35(9):7553–7571

    Article  CAS  Google Scholar 

  20. Maini BB, Bishnoi P (1981) Experimental investigation of hydrate formation behavior of a natural gas bubble in a simulated deep-sea environment. Chem Eng Sci 36(1):183–189

    Article  CAS  Google Scholar 

  21. Khurana M, Yin Z, Linga P (2017) A review of clathrate hydrate nucleation. ACS Sustain Chem Eng 5:11176–11203

    Article  CAS  Google Scholar 

  22. Lang X, Fan S, Wang Y (2010) Intensification of methane and hydrogen storage in clathrate hydrate and future prospect. J Nat Gas Chem 19:203–209

    Article  CAS  Google Scholar 

  23. Hao W, Wang J, Fan S, Wenbin H (2007) Study on methane hydration process in a semi-continuous stirred tank reactor. Energy Convers Manag 48:954–960

    Article  CAS  Google Scholar 

  24. Longinos SN, Parlaktuna M (2021) Kinetic analysis of methane-propane hydrate formation by the use of different impellers. ASC Omega 6:1636–1646. https://doi.org/10.1021/acsomega.0c05615

    Article  CAS  Google Scholar 

  25. Longinos SN, Parlaktuna M (2020) The effect of eperimental conditions on methane (95%)–propane (5%) hydrate formation. Energies 13(24):6710. https://doi.org/10.3390/en13246710

    Article  CAS  Google Scholar 

  26. Mork M (2002) Formation rate of natural gas hydrate-reactor experiments and models, PhD thesis, NTN University, Norway

  27. Longinos SN, Parlaktuna M (2021) Kinetic analysis of CO2 hydrate formation by the use of different impellers. Reac Kinet Mech Cat. https://doi.org/10.1007/s11144-021-01968-z

    Article  Google Scholar 

  28. Longinos SN, Parlaktuna M (2021) Examination of behavior of lysine on methane (95%) – propane (5%) hydrate formation by the use of different impellers. J Petrol Explor Prod Technol 11(4):1823–1831. https://doi.org/10.1007/s13202-021-01146-w

    Article  CAS  Google Scholar 

  29. Longinos SN, Parlaktuna M (2021) Are the amino acids inhibitors or promoters on methane (95%) – propane (5%) hydrate formation? Reac Kinet Mech Cat 132(2):795–809. https://doi.org/10.1007/s11144-021-01959-0

    Article  CAS  Google Scholar 

  30. Longinos SN, Parlaktuna M (2021) Kinetic analysis of dual impellers on methane hydrate formation. Int J Chem Reactor Eng 19(2):155–165. https://doi.org/10.1515/ijcre-2020-0231

    Article  Google Scholar 

  31. Longinos SN, Parlaktuna M (2021) The effect of experimental conditions on methane hydrate formation by the use of single and dual impellers. Reac Kinet Mech Cat 132(2):771–794. https://doi.org/10.1007/s11144-021-01937-6

    Article  CAS  Google Scholar 

  32. Lee BI, Kesler MA (1975) Generalized thermodynamic correlation based on three parameter corresponding states. AIChE 21(3):510–527. https://doi.org/10.1002/aic.690210313

    Article  CAS  Google Scholar 

  33. Linga P, Daraboina N, Ripmeester JA, Englezos P (2012) Enhanced rate of gas hydrate formation in a fixed bed column filled with sand compared to a stirred vessel. Chem Eng Sci 68(1):617–623

    Article  CAS  Google Scholar 

  34. Linga P, Kumar R, Englezos P (2007) The clathrate hydrate process for post and pre-combustion capture of carbon dioxide. J Hazard Mater 149:625–629

    Article  CAS  Google Scholar 

  35. Tajima H, Nagata Y, Abe A, Yamasaki F, Kiyono F, Yamagiwa K (2010) HFC-134a hydrate formation kinetics during continuous gas hydrate formation with a kenics static mixer for gas separation. Ind Eng Chem Res 49:2525–2532

    Article  CAS  Google Scholar 

  36. Englezos P, Kalogerakis N, Dholabhai PD, Bishnoi PR (1989) Kinetics of formation of methane and ethane gas hydrates. Chem Eng Sci 42:2647–2658

    Article  Google Scholar 

  37. Adamiak R, Karcz J (2007) Effects of type and number of impellers and liquid viscosity on the power characteristics of mechanically agitated gas-liquid systems, Institute of Chemistry. Chem Pap 61(1):16–23

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotirios Nik. Longinos.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2985 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longinos, S.N., Parlaktuna, M. Examination of methane hydrate formation by the use of dual impeller combinations. Reac Kinet Mech Cat 133, 729–740 (2021). https://doi.org/10.1007/s11144-021-02017-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02017-5

Keywords

Navigation