Skip to main content
Log in

The Current State of Earthquake Potential on Java Island, Indonesia

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Between 2006 and 2020, earthquakes and other geohazards on volcano-dotted Java Island have caused about 7000 deaths, and another 1.8 million people were injured, displaced, or left homeless. In this study, we quantify the current state of earthquake hazard for 29 cities of Java, using seismicity statistics of a cumulative number of small events (natural times) between pairs of large earthquakes. This approach, known as earthquake nowcasting (Rundle et al., 2016), rests on the key concepts of elastic rebound and ergodic dynamics in earthquake fault networks. Our analysis of statistical inference shows that the estimated earthquake potential score (EPS) as on February 18, 2021 corresponding to M ≥ 6.5 events in a 300 km circular area ranges from 43 to 94%, with the scores of Jakarta (43), Surabaya (89), Bandung (69), Semarang (48), Serang (47), and Yogyakarta (59). This means, for example, that Surabaya has progressed significantly in the regional cycle of large earthquakes, whereas Yogyakarta is about midway in its seismic cycle. We observe that a change in magnitude threshold or geographic area has a consistent impact on the nowcast scores. These findings not only enable a rapid yet meaningful way to rank several cities based on their current exposure to earthquake hazards, but also empower earthquake scientists and policymakers towards better policymaking, land-use planning, earthquake insurance, disaster risk mitigation, and social awareness with respect to the seismically active island of Java.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Earthquake data were downloaded from public and regional catalogs: Advanced National Seismic System comprehensive catalog (http://www.ncedc.org/anss/catalog-search.html), Meteorological, Climatological and Geophysical Agency (BMKG) of Indonesia catalog (http://repogempa.bmkg.go.id/repo_new/), and International Seismological Centre catalog (http://www.isc.ac.uk/iscbulletin/search/catalogue/). All websites were last accessed in February, 2021.

References

  • Abercrombie, R. E., Antolik, M., Felzer, K., & Ekström, G. (2001). The 1994 Java tsunami earthquake: Slip over a subducting seamount. Journal of Geophysical Research: Solid Earth, 106(B4), 6595–6607.

    Google Scholar 

  • Abidin, H. Z., Andreas, H., Kato, T., Ito, T., Meilano, I., Kimata, F., Natawidjaya, D. H., & Harjono, H. (2009). Crustal deformation studies in Java (Indonesia) using GPS. Journal of Earthquake and Tsunami, 3(02), 77–88.

    Google Scholar 

  • Afnimar, E. Y., & Rasmid. (2015). Geological and tectonic implications obtained from first seismic activity investigation around Lembang fault. Geoscience Letters, 2(1), 4.

    Google Scholar 

  • Ammon, C. J., Kanamori, H., La, T., & Velasco, A. A. (2006). The 17 July 2006 Java tsunami earthquake. Geophysical Research Letters, 33(24), L24308.

    Google Scholar 

  • Bhatia, A., Pasari, S., Mehta, A. (2018). Earthquake forecasting using artificial neural networks. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-5, 823–827. https://doi.org/10.5194/isprs-archives-XLII-5-823-2018.

    Article  Google Scholar 

  • Bilek, S. L., & Engdahl, E. R. (2007). Rupture characterization and aftershock relocations for the 1994 and 2006 tsunami earthquakes in the Java subduction zone. Geophysical Research Letters. https://doi.org/10.1029/2007GL031357

    Article  Google Scholar 

  • BNPB-National Disaster Management Agency. 2019. Tsunami Selat Sunda. (https://bnpb.go.id/publikasi/infografis/tsunami-selat-sunda.html). Accessed Feb 2021.

  • Boyd, O. S. (2012). Including foreshocks and aftershocks in time-independent probabilistic seismic-hazard analyses. Bulletin of the Seismological Society of America, 102, 909–917.

    Google Scholar 

  • Chen, K. H., Burgmann, R., & Nadeau, R. M. (2013). Do earthquakes talk to each other? Triggering and interaction of repeating sequences at Parkfield. Journal of Geophysical Research, 118, 165–182.

    Google Scholar 

  • Ciesin, C. (2005). Gridded population of the world version 3 (gpwv3): Population density grids, socioeconomic data and applications center (SEDAC). Columbia University.

    Google Scholar 

  • Curray, J. R., Emmel, F. J., Moore, D. G., & Raitt, R. W. (1982). Structure, tectonics, and geological history of the northeastern Indian Ocean. The ocean basins and margins (pp. 399–450). Boston: Springer.

    Google Scholar 

  • Dardji, N., Villemin, T., & Rampnoux, J. P. (1994). Paleostresses and strike-slip movement: The Cimandiri fault zone, West Java, Indonesia. Journal of Southeast Asian Earth Sciences, 9(1–2), 3–11.

    Google Scholar 

  • Diambama, A. D., Anggraini, A., Nukman, M., Lühr, B. G., & Suryanto, W. (2019). Velocity structure of the earthquake zone of the M6.3 Yogyakarta earthquake 2006 from a seismic tomography study. Geophysical Journal International, 216(1), 439–452.

    Google Scholar 

  • Field, E. H., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., Jackson, D. D., Johnson, K. M., Jordan, T. H., Madden, C., Michael, A. J., & Milner, K. R. (2015). Long-term time-dependent probabilities for the third uniform California earthquake rupture forecast (UCERF3). Bulletin of Seismological Society of America, 105, 511–543.

    Google Scholar 

  • Fujii, Y., & Satake, K. (2006). Source of the July 2006 West Java tsunami estimated from tide gauge records. Geophysical Research Letters. https://doi.org/10.1029/2006GL028049

    Article  Google Scholar 

  • Gatignon, A., Van Wassenhove, L. N., & Charles, A. (2010). The Yogyakarta earthquake: Humanitarian relief through IFRC’s decentralized supply chain. International Journal of Production Economics, 126(1), 102–110.

    Google Scholar 

  • Gunawan, E., & Widiyantoro, S. (2019). Active tectonic deformation in Java, Indonesia inferred from a GPS-derived strain rate. Journal of Geodynamics, 123, 49–54.

    Google Scholar 

  • Hall, R., B. Clements, & Smyth, H. R. 2009. Sundaland: basement character, structure and plate tectonic development.. In Indonesian Petroleum Association Thirty-Third Annual Convention and Exhibition, IPA09- G-134: 1–27.

  • Hamilton, W. B. (1979). Tectonics of the Indonesian region. Geological Survey, 1078, 352.

    Google Scholar 

  • Hamling, I. J., Hreinsdóttir, S., Clark, K., Elliott, J., Liang, C., Fielding, E., Litchfield, N., Villamor, P., Wallace, L., Wright, T. J., & D’Anastasio, E. (2017). Complex multifault rupture during the 2016 Mw7.8 Kaikoura earthquake. Science, 356, 154ss.

    Google Scholar 

  • Hanifa, N. R., Sagiya, T., Kimata, F., Efendi, J., Abidin, H. Z., & Meilano, I. (2014). Interplate coupling model off the southwestern coast of Java, Indonesia, based on continuous GPS data in 2008–2010. Earth and Planetary Science Letters, 401, 159–171.

    Google Scholar 

  • Harris, R., & Major, J. (2017). Waves of destruction in the East Indies: The Wichmann catalogue of earthquakes and tsunami in the Indonesian region from 1538 to 1877. Geological Society, London, Special Publications, 441(1), 9–46.

    Google Scholar 

  • Heidarzadeh, M., Ishibe, T., Sandanbata, O., Muhari, A., & Wijanarto, A. B. (2020). Numerical modeling of the subaerial landslide source of the 22 December 2018 Anak Krakatoa volcanic tsunami, Indonesia. Ocean Engineering, 195, 106733.

    Google Scholar 

  • Holliday, J. R., Graves, W. R., Rundle, J. B., & Turcotte, D. (2016). Computing earthquake probabilities on global scales. Pure and Applied Geophysics, 173, 739–748.

    Google Scholar 

  • Horspool, N., Pranantyo, I., Griffin, J., Latief, H., Natawidjaja, D. H., Kongko, W., Cipta, A., Bustaman, B., Anugrah, S. D., & Thio, H. K. (2014). A probabilistic tsunami hazard assessment for Indonesia. Natural Hazards and Earth System Sciences, 14(11), 3105.

    Google Scholar 

  • Iervolino, I., Giorgio, M., & Polidoro, B. (2014). Sequence-based probabilistic seismic hazard analysis. Bulletin of the Seismological Society of America, 104(2), 1006–1012.

    Google Scholar 

  • Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions. Wiley-Interscience.

    Google Scholar 

  • Katili, J. A. (1973). Geochronology of West Indonesia and its implication on plate tectonics. Tectonophysics, 19(3), 195–212.

    Google Scholar 

  • Katili, J. A. (1975). Volcanism and plate tectonics in the Indonesian island arcs. Tectonophysics, 26(3–4), 165–188.

    Google Scholar 

  • Kato, T., Ito, T., & Abidin, H. Z. (2007). Preliminary report on crustal deformation surveys and tsunami measurements caused by the July 17, 2006 South off Java Island Earthquake and Tsunami, Indonesia. Earth, Planets and Space, 59(9), 1055–1059.

    Google Scholar 

  • Kopp, H., Flueh, E. R., Petersen, C. J., Weinrebe, W., & Wittwer, A. (2006). The Java margin revisited: Evidence for subduction erosion off Java. Earth and Planetary Science Letters, 242(1–2), 130–142.

    Google Scholar 

  • Kopp, H., Klaeschen, D., Flueh, E. R., Bialas, J., & Reichert, C. (2002). Crustal structure of the Java margin from seismic wide-angle and multichannel reflection data. Journal of Geophysical Research. https://doi.org/10.1029/2000JB000095

    Article  Google Scholar 

  • Koulali, A., McClusky, S., Susilo, S., Leonard, Y., Cummins, P., Tregoning, P., Meilano, I., Efendi, J., & Wijanarto, A. B. (2017). The kinematics of crustal deformation in Java from GPS observations: Implications for fault slip partitioning. Earth and Planetary Science Letters, 458, 69–79.

    Google Scholar 

  • Lavigne, F., Gomez, C., Giffo, M., Wassmer, P., Hoebreck, C., Mardiatno, D., Prioyono, J., & Paris, R. (2007). Field observations of the 17 July 2006 Tsunami in Java. Natural Hazards and Earth System Sciences, 7, 177–183.

    Google Scholar 

  • Lay, T., Ammon, C. J., Kanamori, H., Yamazaki, Y., Cheung, K. F., & Hutko, A. R. (2011). The 25 October 2010 Mentawai tsunami earthquake (Mw 7.8) and the tsunami hazard presented by shallow megathrust ruptures. Geophysical Research Letters, 38(6), L06302.

    Google Scholar 

  • Luginbuhl, M., Rundle, J. B., & Turcotte, D. L. (2018). Natural time and nowcasting induced seismicity at the Groningen gas fields in the Netharlands. Geophysical Journal International, 215, 753–759.

    Google Scholar 

  • Malod, J. A., Karta, K., Beslier, M. O., & Zen, M. T., Jr. (1995). From normal to oblique subduction: Tectonic relationships between Java and Sumatra. Journal of Southeast Asian Earth Sciences, 12(1–2), 85–93.

    Google Scholar 

  • Maramai, A., & Tinti, S. (1997). The 3 June 1994 Java tsunami: A post-event survey of the coastal effects. Natural Hazards, 15(1), 31–49.

    Google Scholar 

  • Matthews, S. J., & Bransden, P. J. (1995). Late cretaceous and cenozoic tectono-stratigraphic development of the East Java Sea Basin, Indonesia. Marine and Petroleum Geology, 12(5), 499–510.

    Google Scholar 

  • Meilano, I., Abidin, H. Z., Andreas, H., Gumilar, I., Sarsito, D., Hanifa, R. R., Harjono, H., Kato, T., Kimata, F., & Fukuda, Y. (2012). Slip rate estimation of the Lembang Fault West Java from geodetic observation. Journal of Disaster Research, 7(1), 12–18.

    Google Scholar 

  • Metcalfe, I. (2011). Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Research, 19(1), 3–21.

    Google Scholar 

  • Mori, J., Mooney, W. D., Kurniawan, S., Anaya, A. I., & Widiyantoro, S. (2007). The 17 July 2006 tsunami earthquake in west Java, Indonesia. Seismological Research Letters, 78(2), 201–207.

    Google Scholar 

  • Muhari, A., Diposaptono, S., & Imamura, F. (2007). Toward an integrated tsunami disaster mitigation: Lessons learned from previous tsunami events in Indonesia. Journal of Natural Disaster Science, 29(1), 13–19.

    Google Scholar 

  • Newcomb, K. R., & McCann, W. R. (1987). Seismic history and seismotectonics of the Sunda Arc. Journal of Geophysical Research: Solid Earth, 92(B1), 421–439.

    Google Scholar 

  • Ouillon, G., Castaing, C., & Sornette, D. (1996). Hierarchical geometry of faulting. Journal of Geophysical Research, 101(B3), 5477–5487.

    Google Scholar 

  • Pal, T., Chakraborty, P. P., Gupta, T. D., & Singh, C. D. (2003). Geodynamic evolution of the outer-arc–forearc belt in the Andaman Islands, the central part of the Burma-Java subduction complex. Geological Magazine, 140(3), 289–307.

    Google Scholar 

  • Paris, A., Heinrich, P., Paris, R., & Abadie, S. (2020). The December 22, 2018 Anak Krakatau, Indonesia, landslide and tsunami: Preliminary modeling results. Pure and Applied Geophysics, 177(2), 571–590.

    Google Scholar 

  • Pasari, S. 2015. Understanding Himalayan tectonics from geodetic and stochastic modeling. PhD Thesis, Dept. Civil Engg., IIT Kanpur, India: 376.

  • Pasari, S. (2018). Stochastic modeling of earthquake interoccurrence times in northwest Himalaya and adjoining regions. Geomatics, Natural Hazards and Risk, 9(1), 568–588. Taylor & Francis.

    Google Scholar 

  • Pasari, S. (2019a). Inverse Gaussian versus lognormal distribution in earthquake forecasting: keys and clues. Journal of Seismology, 23(3), 537–559. https://doi.org/10.1007/s10950-019-09822-5.

    Article  Google Scholar 

  • Pasari, S. (2019b). Nowcasting earthquakes in the Bay-of-Bengal region. Pure Applied Geophycis, 23, 537–559.

    Google Scholar 

  • Pasari, S. (2020) Stochastic modeling of earthquake interevent counts (Natural Times) in Northwest Himalaya and adjoining regions. In S. Bhattacharyya, J. Kumar, K. Ghoshal (Eds.) Mathematical modeling and computational tools, ICACM 2018, Springer proceedings in mathematics & statistics (Vol. 320, pp. 495–501). Singapore: Springer. https://doi.org/10.1007/978-981-15-3615-1_35

    Chapter  Google Scholar 

  • Pasari, S., & Dikshit, O. (2014a). Impact of three-parameter Weibull models in probabilistic assessment of earthquake hazards. Pure and Applied Geophysics, 171(7), 1251–1281. https://doi.org/10.1007/s00024-013-0704-8

    Article  Google Scholar 

  • Pasari, S., & Dikshit, O. (2014b). Three-parameter generalized exponential distribution in earthquake recurrence interval estimation. Natural Hazards, 73, 639–656. https://doi.org/10.1007/s11069-014-1092-9.

    Article  Google Scholar 

  • Pasari, S., & Dikshit, O. (2015a). Distribution of earthquake interevent times in northeast India and adjoining regions. Pure Applied Geophysics, 172, 2533–2544.

    Google Scholar 

  • Pasari, S., & Dikshit, O. (2015b). Earthquake interevent time distribution in Kachchh, northwestern India. Earth Planets and Space, 67, 129. https://doi.org/10.1186/s40623-015-0295-y.

    Article  Google Scholar 

  • Pasari, S., & Dikshit, O. (2018). Stochastic earthquake interevent time modeling from exponentiated Weibull distributions. Natural Hazards, 90(2), 823–842. https://doi.org/10.1007/s11069-017-3074-1.

    Article  Google Scholar 

  • Pasari, S., & Mehta, A. (2018). Nowcasting earthquakes in the northwest Himalaya and surrounding regions. International Archives of the Photogrammetry, Remote Sensing, and Spatial Information Sciences, XLII–5, 855–859.

    Google Scholar 

  • Pasari, S., & Sharma, Y. (2020). Contemporary earthquake hazards in the west-northwest Himalaya: A statistical perspective through natural times. Seismological Research Letters, 91(6), 3358–3369. https://doi.org/10.1785/0220200104.

    Article  Google Scholar 

  • Pasari, S., Sharma, Y., & Neha (2021a). Quantifying the current state of earthquake hazards in Nepal. Applied Computing and Geosciences, 10, 100058. https://doi.org/10.1016/j.acags.2021.100058.

    Article  Google Scholar 

  • Pasari, S., Simanjuntak, A. V. H., Mehta, A., Neha, & Sharma, Y. (2021b). A synoptic view of the natural time distribution and contemporary earthquake hazards in Sumatra, Indonesia. Natural Hazards. https://doi.org/10.1007/s11069-021-04682-0. (in print)

    Article  Google Scholar 

  • Perez-Oregon, J., Angulo-Brown, F., & Sarlis, N. V. (2020). Nowcasting avalanches as earthquakes and the predictability of strong avalanches in the olami-feder-christensen model. Entropy, 22, 1228. https://doi.org/10.3390/e22111228

    Article  Google Scholar 

  • Polet, J., & Kanamori, H. (2000). Shallow subduction zone earthquakes and their tsunamigenic potential. Geophysical Journal International, 142(3), 684–702.

    Google Scholar 

  • Rundle, J. B., & Donnellan, A. (2020). Nowcasting earthquakes in southern California with machine learning: Bursts, swarms and aftershocks may reveal the regional tectonic stress. Earth Space Science, 58, 147.

    Google Scholar 

  • Rundle, J. B., Giguere, A., Turcotte, D. L., Crutchfield, J. P., & Donnellan, A. (2019). Global seismic nowcasting with Shannon information entropy. Earth Space Science, 6, 456–472.

    Google Scholar 

  • Rundle, J. B., Holliday, J. R., Graves, W. R., Turcotte, D. L., Tiampo, K. F., & Klein, W. (2012). Probabilities for large events in driven threshold systems. Physical Review E., 86, 021106.

    Google Scholar 

  • Rundle, J. B., Luginbuhl, M., Giguere, A., & Turcotte, D. L. (2018). Natural time, nowcasting and the physics of earthquakes: Estimation of seismic risk to global megacities. Pure Applied Geophysics, 175, 647–660.

    Google Scholar 

  • Rundle, J. B., Luginbuhl, M., Khapikova, P., Turcotte, D. L., Donnellan, A., & McKim, G. (2020). Nowcasting great global earthquake and tsunami sources. Pure Applied Geophysics, 177, 359–368.

    Google Scholar 

  • Rundle, J. B., Turcotte, D. L., Donnellan, A., Grant-Ludwig, L., Luginbuhl, M., & Gong, G. (2016). Nowcasting earthquakes. Earth Space Science, 3, 480–486.

    Google Scholar 

  • Rundle, J. B., Turcotte, D. L., Shchebakov, R., Klein, W., & Sammis, C. (2003). Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems. Reviews of Geophysics, 41, 1019.

    Google Scholar 

  • Sakamoto, M., & Yamori, K. (2009). A study of life recovery and social capital regarding disaster victims—A case study of Indian Ocean tsunami and Central Java earthquake recovery. Journal of Natural Disaster Science, 31(2), 49–56.

    Google Scholar 

  • Salditch, L., Stein, S., Neely, J., Spencer, B. D., Brooks, E. M., Agnon, A., & Liu, M. (2020). Earthquake supercycles and long-term fault memory. Tectonophysics. https://doi.org/10.1016/j.tecto.2019.228289 (in print).

    Article  Google Scholar 

  • Schlüter, H. U., Gaedicke, C. H., Roeser, H. A., Schreckenberger, B., Meyer, H., Reichert, C. H., Djajadihardja, Y., & Prexl, A. (2002). Tectonic features of the southern Sumatra-western Java forearc of Indonesia. Tectonics, 21(5), 11–1.

    Google Scholar 

  • Scholz, C. H. (2009). The mechanics of earthquakes and faulting. Cambridge University Press.

    Google Scholar 

  • Sharma, Y., Pasari, S., Ching, K. E., Dikshit, O., Kato, T., Malik, J. N., Chang, C. P., & Yen, J. Y. (2020). Spatial distribution of earthquake potential along the Himalayan arc. Tectonophysics, 791, 228556. https://doi.org/10.1016/j.tecto.2020.228556.

    Article  Google Scholar 

  • Shulgin, A., Kopp, H., Mueller, C., Planert, L., Lueschen, E., Flueh, E. R., & Djajadihardja, Y. (2011). Structural architecture of oceanic plateau subduction offshore Eastern Java and the potential implications for geohazards. Geophysical Journal International, 184(1), 12–28.

    Google Scholar 

  • Simmons, N. A., Myers, S. C., Johannesson, G., Matzel, E., & Grand, S. P. (2015). Evidence for long-lived subduction of an ancient tectonic plate beneath the southern Indian Ocean. Geophysical Research Letters, 42(21), 9270–9278.

    Google Scholar 

  • Suhardja, S. K., Widiyantoro, S., Métaxian, J. P., Rawlinson, N., Ramdhan, M., & Budi-Santoso, A. (2020). Crustal thickness beneath Mt. Merapi and Mt. Merbabu, Central Java, Indonesia, inferred from receiver function analysis. Physics of the Earth and Planetary Interiors, 302, 106455.

    Google Scholar 

  • Supendi, P., Nugraha, A. D., Puspito, N. T., Widiyantoro, S., & Daryono, D. (2018). Identification of active faults in West Java, Indonesia, based on earthquake hypocenter determination, relocation, and focal mechanism analysis. Geoscience Letters, 5(1), 1–10.

    Google Scholar 

  • Susilohadi, S., Gaedicke, C., & Ehrhardt, A. (2005). Neogene structures and sedimentation history along the Sunda forearc basins off southwest Sumatra and southwest Java. Marine Geology, 219(2–3), 133–154.

    Google Scholar 

  • Synolakis, C., Imamura, F., Tsuji, Y., Matsutomi, H., Tinti, S., Cook, B., Chandra, Y. P., & Usman, M. (1995). Damage, conditions of East Java tsunami of 1994 analyzed. EOS, Transactions American Geophysical Union, 76(26), 257–257.

    Google Scholar 

  • Tiampo, K. F., Rundle, J. B., Klein, W., Martins, J. S., & Ferguson, C. D. (2003). Ergodic dynamics in a natural threshold system. Physical Review Letters, 91, 238501.

    Google Scholar 

  • Tiampo, K. F., Rundle, J. B., Klein, W., Martins, J. S., & Ferguson, C. D. (2007). Ergodicity in natural fault systems. Physical Review E, 75, 0666107.

    Google Scholar 

  • Toro, G. R., & Silva, W. J. (2001). Scenario earthquakes for Saint Louis, MO, and Memphis, TN, and seismic hazard maps for the central United States region including the effect of site conditions. Boulder: Risk Engineering.

    Google Scholar 

  • Tregoning, P., Brunner, F. K., Bock, Y., Puntodewo, S. S. O., McCaffrey, R., Genrich, J. F., Calais, E., Rais, J., & Subarya, C. (1994). First geodetic measurement of convergence across the Java Trench. Geophysical Research Letters, 21(19), 2135–2138.

    Google Scholar 

  • Tsuji, T., Yamamoto, K., Matsuoka, T., Yamada, Y., Onishi, K., Bahar, A., Meilano, I., & Abidin, H. Z. (2009). Earthquake fault of the 26 May 2006 Yogyakarta earthquake observed by SAR interferometry. Earth, Planets and Space, 61(7), 29–32.

    Google Scholar 

  • Utsu, T. (1984). Estimation of parameters for recurrence models of earthquakes. Bulletin of Earthquake Research Institute, University of Tokyo, 59, 53–66.

    Google Scholar 

  • Varostos, P. A., Sarlis, N. V., & Skordas, E. S. (2011). Natural time analysis: The new view of time. Springer.

    Google Scholar 

  • Vere-Jones, D., Ben-Zion, Y., & Zuniga, R. (2005). Statistical seismology. Pure and Applied Geophysics, 162, 1023–1026.

    Google Scholar 

  • Walter, T. R., Wang, R., Luehr, B. G., Wassermann, J., Behr, Y., Parolai, S., Anggraini, A., Günther, E., Sobiesiak, M., Grosser, H., & Wetzel, H. U. (2008). The 26 May 2006 magnitude 6.4 Yogyakarta earthquake south of Mt. Merapi volcano: Did lahar deposits amplify ground shaking and thus lead to the disaster? Geochemistry, Geophysics, Geosystems, 9(5), Q05006.

    Google Scholar 

  • Whittaker, J. M., Müller, R. D., Sdrolias, M., & Heine, C. (2007). Sunda-Java trench kinematics, slab window formation and overriding plate deformation since the Cretaceous. Earth and Planetary Science Letters, 255(3–4), 445–457.

    Google Scholar 

  • Widiyantoro, S., Gunawan, E., Muhari, A., et al. (2020). Implications for megathrust earthquakes and tsunamis from seismic gaps south of Java Indonesia. Scientific Reports, 10, 15274. https://doi.org/10.1038/s41598-020-72142-z

    Article  Google Scholar 

  • Widjajanti, N., Pratama, C., Sunantyo, T. A., Heliani, L. S., Ma’ruf, B., Atunggal, D., Lestari, D., Ulinnuha, H., Pinasti, A., & Ummi, R. F. (2020). Present-day crustal deformation revealed active tectonics in Yogyakarta, Indonesia inferred from GPS observations. Geodesy and Geodynamics, 11, 135–142.

    Google Scholar 

  • Wiemer, S. (2000). Introducing probabilistic aftershock hazard mapping. Geophysical Research Letters, 27(20), 3405–3408.

    Google Scholar 

  • Wölbern, I., & Rümpker, G. (2016). Crustal thickness beneath Central and East Java (Indonesia) inferred from P receiver functions. Journal of Asian Earth Sciences, 115, 69–79.

    Google Scholar 

  • Ye, L., Kanamori, H., Rivera, L., Lay, T., Zhou, Y., Sianipar, D., & Satake, K. (2020). The 22 December 2018 tsunami from flank collapse of Anak Krakatau volcano during eruption. Science Advances, 6(3), eaaz377.

    Google Scholar 

  • Yeo, G. L., & Cornell, C. A. (2009). A probabilistic framework for quantification of aftershock ground-motion hazard in California: Methodology and parametric study. Earthquake Engineering & Structural Dynamics., 38(1), 45–60.

    Google Scholar 

  • Yukutake, Y., & Lio, Y. (2017). Why do aftershocks occur? Relationship between mainshock rupture and aftershock sequence based on highly resolved hypocenter and focal mechanism distributions. Earth, Planets and Space, 69(1), 68.

    Google Scholar 

  • Zahirovic, S., Seton, M., & Müller, R. D. (2014). The cretaceous and cenozoic tectonic evolution of Southeast Asia. Solid Earth, 5(1), 227.

    Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge constructive suggestions and useful comments from two anonymous reviewers. Some of the figures were prepared using Generic Mapping Tools (GMT). The fourth author [Neha] thankfully acknowledges the financial support from the CSIR-UGC-NET (Ref. No: 1197/CSIR-UGC NET JUNE 2017).

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Pasari.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasari, S., Simanjuntak, A.V.H., Mehta, A. et al. The Current State of Earthquake Potential on Java Island, Indonesia. Pure Appl. Geophys. 178, 2789–2806 (2021). https://doi.org/10.1007/s00024-021-02781-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02781-4

Keywords

Navigation