Skip to main content
Log in

Existence and Hyers–Ulam stability of solutions for a delayed hyperbolic partial differential equation

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

In this paper, we first prove the existence and uniqueness of the solutions for a delayed hyperbolic partial differential equation by applying the progressive contraction technique introduced by Burton (Nonlinear Dyn Syst Theory 16(4): 366–371, 2016; Fixed Point Theory 20(1): 107–113, 2019) to the corresponding fixed-point problem. Then we derive a Hyers–Ulam stability result for this differential equation by using a Wendorff-type inequality and the Abstract Gronwall Lemma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bainov, P. Simeonov, Integral Inequalities and Applications (Kluwer Academic Publishers, Dordrecht, 1992)

    Book  Google Scholar 

  2. T.A. Burton, Existence and uniqueness results by progressive contractions for integro-differential equations. Nonlinear Dyn. Syst. Theory 16(4), 366–371 (2016)

    MathSciNet  MATH  Google Scholar 

  3. T.A. Burton, A note on existence and uniqueness for integral equations with sum of two operators: progressive contractions. Fixed Point Theory 20(1), 107–113 (2019)

    Article  MathSciNet  Google Scholar 

  4. T.A. Burton, I.K. Purnaras, Global existence and uniqueness of solutions of integral equations with delay: progressive contractions. Electron. J. Qual. Theory Differ. Equ. 2017(49), 1–6 (2017)

    Article  MathSciNet  Google Scholar 

  5. D.H. Hyers, On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27(4), 222–224 (1941)

    Article  MathSciNet  Google Scholar 

  6. S.-M. Jung, Hyers–Ulam stability of linear differential equation of the first order (III). J. Math. Anal. Appl. 311(1), 139–146 (2005)

    Article  MathSciNet  Google Scholar 

  7. S.-M. Jung, Hyers–Ulam stability of a system of first order linear differential equations with constant coefficients. J. Math. Anal. Appl. 320(2), 549–561 (2006)

    Article  MathSciNet  Google Scholar 

  8. S.-M. Jung, A fixed point approach to the stability of a Volterra integral equation. Fixed Point Theory Appl. 2007, Article ID 57064 (2007)

  9. S.-M. Jung, Hyers–Ulam stability of linear partial differential equations of first order. Appl. Math. Lett. 22(1), 70–74 (2009)

    Article  MathSciNet  Google Scholar 

  10. S.-M. Jung, K.-S. Lee, Hyers–Ulam stability of first order linear partial differential equations with constant coefficients. Math. Inequal. Appl. 10(2), 261–266 (2007)

    MathSciNet  MATH  Google Scholar 

  11. V. Lakshmikantham, S. Leela, A.A. Martynyuk, Stability Analysis of Nonlinear Systems (Marcel Dekker, New York, 1989)

    MATH  Google Scholar 

  12. N. Lungu, C. Craciun, Ulam–Hyers–Rassias stability of a hyperbolic partial differential equation. ISRN Math. Anal. 2012, Art. ID 609754, (2012)

  13. N. Lungu, D. Popa, Hyers–Ulam stability of a first order partial differential equation. J. Math. Anal. Appl. 385(1), 86–91 (2012)

    Article  MathSciNet  Google Scholar 

  14. N. Lungu, D. Popa, Hyers–Ulam stability of some partial differential equation. Carpatian J. Math. 30(3), 327–334 (2014)

    Article  MathSciNet  Google Scholar 

  15. N. Lungu, I.A. Rus, Hyperbolic differential inequalities. Lib. Math. 21, 35–40 (2001)

    MathSciNet  MATH  Google Scholar 

  16. N. Lungu, I.A. Rus, Ulam stability of nonlinear hyperbolic partial differential equations. Carpatian J. Math. 24(3), 403–408 (2008)

    MATH  Google Scholar 

  17. T. Miura, S. Miyajima, S.E. Takahasi, A characterization of Hyers–Ulam stability of first order linear differential operators. J. Math. Anal. Appl. 286(1), 136–146 (2003)

    Article  MathSciNet  Google Scholar 

  18. T. Miura, S. Miyajima, S.E. Takahasi, Hyers–Ulam stability of linear differential operator with constant coefficients. Math. Nachr. 258(1), 90–96 (2003)

    Article  MathSciNet  Google Scholar 

  19. D. Popa, I. Raşa, On the Hyers–Ulam stability of the linear differential equation. J. Math. Anal. Appl. 381(2), 530–537 (2011)

    Article  MathSciNet  Google Scholar 

  20. D. Popa, I. Raşa, Hyers–Ulam stability of the linear differential operator with nonconstant coefficients. Appl. Math. Comput. 219(4), 1562–1568 (2012)

    Article  MathSciNet  Google Scholar 

  21. I.A. Rus, Picard operators and applications. Sci. Math. Jpn. 58(1), 191–219 (2003)

    MathSciNet  MATH  Google Scholar 

  22. I.A. Rus, Fixed points, upper and lower fixed points: abstract Gronwall lemmas. Carpathian J. Math. 20(1), 125–134 (2004)

    MathSciNet  MATH  Google Scholar 

  23. S.M. Ulam, A Collection of Mathematical Problems (Interscience, New York, 1960)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faruk Develi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çelik, C., Develi, F. Existence and Hyers–Ulam stability of solutions for a delayed hyperbolic partial differential equation. Period Math Hung 84, 211–220 (2022). https://doi.org/10.1007/s10998-021-00400-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-021-00400-2

Keywords

Mathematics Subject Classification

Navigation