Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Insights into the biology and therapeutic implications of TNF and regulatory T cells

Abstract

Treatments that block tumour necrosis factor (TNF) have major beneficial effects in several autoimmune and rheumatic diseases, including rheumatoid arthritis. However, some patients do not respond to TNF inhibitor treatment and rare occurrences of paradoxical disease exacerbation have been reported. These limitations on the clinical efficacy of TNF inhibitors can be explained by the differences between TNF receptor 1 (TNFR1) and TNFR2 signalling and by the diverse effects of TNF on multiple immune cells, including FOXP3+ regulatory T cells. This basic knowledge sheds light on the consequences of TNF inhibitor therapies on regulatory T cells in treated patients and on the limitations of such treatment in the control of diseases with an autoimmune component. Accordingly, the next generation of drugs targeting TNF is likely to be based on agents that selectively block the binding of TNF to TNFR1 and on TNFR2 agonists. These approaches could improve the treatment of rheumatic diseases in the future.

Key points

  • Tumour necrosis factor (TNF) is a major inflammatory cytokine that has deleterious effects in several rheumatic and autoimmune diseases as attested by the success of TNF inhibitor therapy.

  • Some patients do not respond to TNF inhibitors and others develop paradoxical autoimmune exacerbations that can be explained by the immunoregulatory role of TNF.

  • The pro-inflammatory and anti-inflammatory properties of TNF are largely segregated by the capacity of this cytokine to bind to TNF receptor 1 (TNFR1) and TNFR2, respectively.

  • The anti-inflammatory effects of TNF are explained by its capacity to increase the proliferation, stability and suppressive function of FOXP3+ regulatory T cells via TNFR2 signalling.

  • Antagonists of TNFR1 and agonists of TNFR2 constitute a new generation of drugs that might be more effective and have fewer adverse effects than classical TNF inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The pro-inflammatory and anti-inflammatory activities of TNF are driven by effects on innate and adaptive immunity.
Fig. 2: The overall effects of TNF on Treg cells.

Similar content being viewed by others

References

  1. Feldmann, M. Translating molecular insights in autoimmunity into effective therapy. Annu. Rev. Immunol. 27, 1–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Monaco, C., Nanchahal, J., Taylor, P. & Feldmann, M. Anti-TNF therapy: past, present and future. Int. Immunol. 27, 55–62 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Keffer, J. et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J. 10, 4025–4031 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Silva-Fernandez, L. & Hyrich, K. Rheumatoid arthritis: when TNF inhibitors fail in RA — weighing up the options. Nat. Rev. Rheumatol. 10, 262–264 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Roda, G., Jharap, B., Neeraj, N. & Colombel, J. F. Loss of response to anti-TNFs: definition, epidemiology, and management. Clin. Transl. Gastroenterol. 7, e135 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Esposito, M. et al. Survival rate of antitumour necrosis factor-alpha treatments for psoriasis in routine dermatological practice: a multicentre observational study. Br. J. Dermatol. 169, 666–672 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Ramos-Casals, M., Brito-Zeron, P., Soto, M. J., Cuadrado, M. J. & Khamashta, M. A. Autoimmune diseases induced by TNF-targeted therapies. Best Pract. Res. Clin. Rheumatol. 22, 847–861 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Ramos-Casals, M. et al. Autoimmune diseases induced by biological agents: a double-edged sword? Autoimmun. Rev. 9, 188–193 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Brenner, D., Blaser, H. & Mak, T. W. Regulation of tumour necrosis factor signalling: live or let die. Nat. Rev. Immunol. 15, 362–374 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Conrad, C. et al. TNF blockade induces a dysregulated type 1 interferon response without autoimmunity in paradoxical psoriasis. Nat. Commun. 9, 25 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. van Oosten, B. W. et al. Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 47, 1531–1534 (1996).

    Article  PubMed  Google Scholar 

  12. [No authors listed] TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group. Neurology 53, 457–465 (1999).

  13. Aggarwal, B. B., Gupta, S. C. & Kim, J. H. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 119, 651–665 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kalliolias, G. D. & Ivashkiv, L. B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat. Rev. Rheumatol. 12, 49–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Atretkhany, K. N., Gogoleva, V. S., Drutskaya, M. S. & Nedospasov, S. A. Distinct modes of TNF signaling through its two receptors in health and disease. J. Leukoc. Biol. 107, 893–905 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Salomon, B. L. et al. Tumor necrosis factor alpha and regulatory T cells in oncoimmunology. Front. Immunol. 9, 444 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Davignon, J. L. et al. Modulation of T-cell responses by anti-tumor necrosis factor treatments in rheumatoid arthritis: a review. Arthritis Res. Ther. 20, 229 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Horiuchi, T., Mitoma, H., Harashima, S., Tsukamoto, H. & Shimoda, T. Transmembrane TNF-α: structure, function and interaction with anti-TNF agents. Rheumatology 49, 1215–1228 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, W. H., Seo, D., Lim, S. G. & Suk, K. Reverse signaling of tumor necrosis factor superfamily proteins in macrophages and microglia: superfamily portrait in the neuroimmune interface. Front. Immunol. 10, 262 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qu, Y., Zhao, G. & Hui, L. Forward and reverse signaling mediated by transmembrane tumor necrosis factor-α and TNF receptor 2: potential roles in an immunosuppressive tumor microenvironment. Front. Immunol. 8, 1675 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Aggarwal, B. B. Signalling pathways of the TNF superfamily: a double-edged sword. Nat. Rev. Immunol. 3, 745–756 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Chen, X., Baumel, M., Mannel, D. N., Howard, O. M. & Oppenheim, J. J. Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+CD25+ T regulatory cells. J. Immunol. 179, 154–161 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Ware, C. F. Network communications: lymphotoxins, LIGHT, and TNF. Annu. Rev. Immunol. 23, 787–819 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Yang, S., Wang, J., Brand, D. D. & Zheng, S. G. Role of TNF-TNF receptor 2 signal in regulatory T cells and its therapeutic implications. Front. Immunol. 9, 784 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Faustman, D. & Davis, M. TNF receptor 2 pathway: drug target for autoimmune diseases. Nat. Rev. Drug Discov. 9, 482–493 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Gregory, A. P. et al. TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis. Nature 488, 508–511 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Park, H., Bourla, A. B., Kastner, D. L., Colbert, R. A. & Siegel, R. M. Lighting the fires within: the cell biology of autoinflammatory diseases. Nat. Rev. Immunol. 12, 570–580 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, S. et al. Differential roles of TNFα-TNFR1 and TNFα-TNFR2 in the differentiation and function of CD4+Foxp3+ induced Treg cells in vitro and in vivo periphery in autoimmune diseases. Cell Death Dis. 10, 27 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rampart, M., De Smet, W., Fiers, W. & Herman, A. G. Inflammatory properties of recombinant tumor necrosis factor in rabbit skin in vivo. J. Exp. Med. 169, 2227–2232 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Venkatesh, D. et al. Endothelial TNF receptor 2 induces IRF1 transcription factor-dependent interferon-β autocrine signaling to promote monocyte recruitment. Immunity 38, 1025–1037 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Duprez, L. et al. RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35, 908–918 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Ding, X. et al. TNF receptor 1 mediates dendritic cell maturation and CD8 T cell response through two distinct mechanisms. J. Immunol. 187, 1184–1191 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Menges, M. et al. Repetitive injections of dendritic cells matured with tumor necrosis factor alpha induce antigen-specific protection of mice from autoimmunity. J. Exp. Med. 195, 15–21 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Noti, M., Corazza, N., Mueller, C., Berger, B. & Brunner, T. TNF suppresses acute intestinal inflammation by inducing local glucocorticoid synthesis. J. Exp. Med. 207, 1057–1066 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, W. et al. Enhanced human hematopoietic stem and progenitor cell engraftment by blocking donor T cell-mediated TNFα signaling. Sci. Transl. Med. 9, eaag3214 (2017).

    Article  PubMed  CAS  Google Scholar 

  36. Ghannam, S., Pene, J., Moquet-Torcy, G., Jorgensen, C. & Yssel, H. Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J. Immunol. 185, 302–312 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Sayegh, S. et al. Rheumatoid synovial fluids regulate the immunomodulatory potential of adipose-derived mesenchymal stem cells through a TNF/NF-κB-dependent mechanism. Front. Immunol. 10, 1482 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Raveney, B. J., Copland, D. A., Dick, A. D. & Nicholson, L. B. TNFR1-dependent regulation of myeloid cell function in experimental autoimmune uveoretinitis. J. Immunol. 183, 2321–2329 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Zhao, X. et al. TNF signaling drives myeloid-derived suppressor cell accumulation. J. Clin. Invest. 122, 4094–4104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chavez-Galan, L. et al. Transmembrane tumor necrosis factor controls myeloid-derived suppressor cell activity via TNF receptor 2 and protects from excessive inflammation during BCG-induced pleurisy. Front. Immunol. 8, 999 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hu, X. et al. Transmembrane TNF-α promotes suppressive activities of myeloid-derived suppressor cells via TNFR2. J. Immunol. 192, 1320–1331 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Sade-Feldman, M. et al. Tumor necrosis factor-alpha blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation. Immunity 38, 541–554 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Bachus, H. et al. Impaired tumor-necrosis-factor-α-driven dendritic cell activation limits lipopolysaccharide-induced protection from allergic inflammation in infants. Immunity 50, 225–240.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alzabin, S. et al. Incomplete response of inflammatory arthritis to TNFα blockade is associated with the Th17 pathway. Ann. Rheum. Dis. 71, 1741–1748 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Mayordomo, A. C. et al. IL-12/23p40 overproduction by dendritic cells leads to an increased Th1 and Th17 polarization in a model of Yersinia enterocolitica-induced reactive arthritis in TNFRp55–/– mice. PLoS ONE 13, e0193573 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Notley, C. A. et al. Blockade of tumor necrosis factor in collagen-induced arthritis reveals a novel immunoregulatory pathway for Th1 and Th17 cells. J. Exp. Med. 205, 2491–2497 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Park, S. H., Park-Min, K. H., Chen, J., Hu, X. & Ivashkiv, L. B. Tumor necrosis factor induces GSK3 kinase-mediated cross-tolerance to endotoxin in macrophages. Nat. Immunol. 12, 607–615 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zakharova, M. & Ziegler, H. K. Paradoxical anti-inflammatory actions of TNF-α: inhibition of IL-12 and IL-23 via TNF receptor 1 in macrophages and dendritic cells. J. Immunol. 175, 5024–5033 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Kusnadi, A. et al. The cytokine TNF promotes transcription factor SREBP activity and binding to inflammatory genes to activate macrophages and limit tissue repair. Immunity 51, 241–257.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Park, S. H. et al. Type I interferons and the cytokine TNF cooperatively reprogram the macrophage epigenome to promote inflammatory activation. Nat. Immunol. 18, 1104–1116 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tartaglia, L. A. et al. Stimulation of human T-cell proliferation by specific activation of the 75-kDa tumor necrosis factor receptor. J. Immunol. 151, 4637–4641 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Kim, E. Y. & Teh, H. S. Critical role of TNF receptor type-2 (p75) as a costimulator for IL-2 induction and T cell survival: a functional link to CD28. J. Immunol. 173, 4500–4509 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Kim, E. Y., Priatel, J. J., Teh, S. J. & Teh, H. S. TNF receptor type 2 (p75) functions as a costimulator for antigen-driven T cell responses in vivo. J. Immunol. 176, 1026–1035 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Calzascia, T. et al. TNF-α is critical for antitumor but not antiviral T cell immunity in mice. J. Clin. Invest. 117, 3833–3845 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, X. et al. TNFR2 expression by CD4 effector T cells is required to induce full-fledged experimental colitis. Sci. Rep. 6, 32834 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Soloviova, K., Puliaiev, M., Haas, M. & Via, C. S. In vivo maturation of allo-specific CD8 CTL and prevention of lupus-like graft-versus-host disease is critically dependent on T cell signaling through the TNF p75 receptor but not the TNF p55 receptor. J. Immunol. 190, 4562–4572 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. de Kivit, S. et al. Stable human regulatory T cells switch to glycolysis following TNF receptor 2 costimulation. Nat. Metab. 2, 1046–1061 (2020).

    Article  PubMed  CAS  Google Scholar 

  58. Schioppa, T. et al. B regulatory cells and the tumor-promoting actions of TNF-α during squamous carcinogenesis. Proc. Natl Acad. Sci. USA 108, 10662–10667 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cope, A. P. et al. Chronic tumor necrosis factor alters T cell responses by attenuating T cell receptor signaling. J. Exp. Med. 185, 1573–1584 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Aspalter, R. M., Wolf, H. M. & Eibl, M. M. Chronic TNF-α exposure impairs TCR-signaling via TNF-RII but not TNF-RI. Cell Immunol. 237, 55–67 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Beyer, M. et al. Tumor-necrosis factor impairs CD4+ T cell-mediated immunological control in chronic viral infection. Nat. Immunol. 17, 593–603 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Qin, H. Y., Chaturvedi, P. & Singh, B. In vivo apoptosis of diabetogenic T cells in NOD mice by IFN-γ/TNF-α. Int. Immunol. 16, 1723–1732 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Naude, P. J., den Boer, J. A., Luiten, P. G. & Eisel, U. L. Tumor necrosis factor receptor cross-talk. FEBS J. 278, 888–898 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Lin, R. H., Hwang, Y. W., Yang, B. C. & Lin, C. S. TNF receptor-2-triggered apoptosis is associated with the down-regulation of Bcl-xL on activated T cells and can be prevented by CD28 costimulation. J. Immunol. 158, 598–603 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Ban, L. et al. Selective death of autoreactive T cells in human diabetes by TNF or TNF receptor 2 agonism. Proc. Natl Acad. Sci. USA 105, 13644–13649 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bhattacharyya, S. et al. Tumor-induced oxidative stress perturbs nuclear factor-κB activity-augmenting tumor necrosis factor-α-mediated T-cell death: protection by curcumin. Cancer Res. 67, 362–370 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Kim, E. Y., Teh, S. J., Yang, J., Chow, M. T. & Teh, H. S. TNFR2-deficient memory CD8 T cells provide superior protection against tumor cell growth. J. Immunol. 183, 6051–6057 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Luckey, U. et al. T cell killing by tolerogenic dendritic cells protects mice from allergy. J. Clin. Invest. 121, 3860–3871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Miller, P. G., Bonn, M. B. & McKarns, S. C. Transmembrane TNF-TNFR2 impairs Th17 differentiation by promoting Il2 expression. J. Immunol. 195, 2633–2647 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Urbano, P. C. M. et al. TNF-α-induced protein 3 (TNFAIP3)/A20 acts as a master switch in TNF-α blockade-driven IL-17A expression. J. Allergy Clin. Immunol. 142, 517–529 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Urbano, P. C. M. et al. TNFα-signaling modulates the kinase activity of human effector Treg and regulates IL-17A expression. Front. Immunol. 10, 3047 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Elicabe, R. J. et al. Lack of TNFR p55 results in heightened expression of IFN-γ and IL-17 during the development of reactive arthritis. J. Immunol. 185, 4485–4495 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Ma, H. L. et al. Tumor necrosis factor alpha blockade exacerbates murine psoriasis-like disease by enhancing Th17 function and decreasing expansion of Treg cells. Arthritis Rheum. 62, 430–440 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Hull, D. N. et al. Anti-tumour necrosis factor treatment increases circulating T helper type 17 cells similarly in different types of inflammatory arthritis. Clin. Exp. Immunol. 181, 401–406 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Talotta, R. et al. Paradoxical expansion of Th1 and Th17 lymphocytes in rheumatoid arthritis following infliximab treatment: a possible explanation for a lack of clinical response. J. Clin. Immunol. 35, 550–557 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Kruglov, A. A., Lampropoulou, V., Fillatreau, S. & Nedospasov, S. A. Pathogenic and protective functions of TNF in neuroinflammation are defined by its expression in T lymphocytes and myeloid cells. J. Immunol. 187, 5660–5670 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Kruglov, A. et al. Contrasting contributions of TNF from distinct cellular sources in arthritis. Ann. Rheum. Dis. 79, 1453–1459 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Wolf, Y. et al. Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammation. J. Exp. Med. 214, 905–917 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mukai, Y. et al. Solution of the structure of the TNF-TNFR2 complex. Sci. Signal. 3, ra83 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Chan, F. K. The pre-ligand binding assembly domain: a potential target of inhibition of tumour necrosis factor receptor function. Ann. Rheum. Dis. 59 (Suppl. 1), i50–i53 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Croft, M. & Siegel, R. M. Beyond TNF: TNF superfamily cytokines as targets for the treatment of rheumatic diseases. Nat. Rev. Rheumatol. 13, 217–233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Van Hauwermeiren, F., Vandenbroucke, R. E. & Libert, C. Treatment of TNF mediated diseases by selective inhibition of soluble TNF or TNFR1. Cytokine Growth Factor. Rev. 22, 311–319 (2011).

    Article  PubMed  CAS  Google Scholar 

  83. Alexopoulou, L. et al. Transmembrane TNF protects mutant mice against intracellular bacterial infections, chronic inflammation and autoimmunity. Eur. J. Immunol. 36, 2768–2780 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Nguyen, D. X. & Ehrenstein, M. R. Anti-TNF drives regulatory T cell expansion by paradoxically promoting membrane TNF-TNF-RII binding in rheumatoid arthritis. J. Exp. Med. 213, 1241–1253 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Grell, M. et al. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83, 793–802 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Medler, J. & Wajant, H. Tumor necrosis factor receptor-2 (TNFR2): an overview of an emerging drug target. Expert Opin. Ther. Targets 23, 295–307 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. So, T. & Croft, M. Regulation of PI-3-kinase and Akt signaling in T lymphocytes and other cells by TNFR family molecules. Front. Immunol. 4, 139 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wajant, H. & Beilhack, A. Targeting regulatory T cells by addressing tumor necrosis factor and its receptors in allogeneic hematopoietic cell transplantation and cancer. Front. Immunol. 10, 2040 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Twu, Y. C., Gold, M. R. & Teh, H. S. TNFR1 delivers pro-survival signals that are required for limiting TNFR2-dependent activation-induced cell death (AICD) in CD8+ T cells. Eur. J. Immunol. 41, 335–344 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Catrina, A. C. et al. Evidence that anti-tumor necrosis factor therapy with both etanercept and infliximab induces apoptosis in macrophages, but not lymphocytes, in rheumatoid arthritis joints: extended report. Arthritis Rheum. 52, 61–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Mitoma, H. et al. Mechanisms for cytotoxic effects of anti-tumor necrosis factor agents on transmembrane tumor necrosis factor α-expressing cells. Arthritis Rheum. 58, 1248–1257 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Tada, Y. et al. Collagen-induced arthritis in TNF receptor-1-deficient mice: TNF receptor-2 can modulate arthritis in the absence of TNF receptor-1. Clin. Immunol. 99, 325–333 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Lee, L. F. et al. The role of TNF-α in the pathogenesis of type 1 diabetes in the nonobese diabetic mouse: analysis of dendritic cell maturation. Proc. Natl Acad. Sci. USA 102, 15995–16000 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. McDevitt, H., Munson, S., Ettinger, R. & Wu, A. Multiple roles for tumor necrosis factor-α and lymphotoxin α/β in immunity and autoimmunity. Arthritis Res. 4 (Suppl. 3), S141–S152 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Green, E. A. & Flavell, R. A. The temporal importance of TNFα expression in the development of diabetes. Immunity 12, 459–469 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Buckner, J. H. Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T cells in human autoimmune diseases. Nat. Rev. Immunol. 10, 849–859 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ehrenstein, M. R. et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J. Exp. Med. 200, 277–285 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dige, A. et al. Adalimumab treatment in Crohn’s disease does not induce early changes in regulatory T cells. Scand. J. Gastroenterol. 46, 1206–1214 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Li, Z. et al. Restoration of Foxp3+ regulatory T-cell subsets and Foxp3 type 1 regulatory-like T cells in inflammatory bowel diseases during anti-tumor necrosis factor therapy. Inflamm. Bowel Dis. 21, 2418–2428 (2015).

    Article  PubMed  Google Scholar 

  101. Bluestone, J. A. & Tang, Q. Treg cells — the next frontier of cell therapy. Science 362, 154–155 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Zemmour, D. et al. Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat. Immunol. 19, 291–301 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lubrano di Ricco, M. et al. Tumor necrosis factor receptor family costimulation increases regulatory T-cell activation and function via NF-κB. Eur. J. Immunol. 50, 972–985 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Vasanthakumar, A. et al. The TNF receptor superfamily-NF-κB axis is critical to maintain effector regulatory T cells in lymphoid and non-lymphoid tissues. Cell Rep. 20, 2906–2920 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Chen, X. et al. Co-expression of TNFR2 and CD25 identifies more of the functional CD4+FoxP3+ regulatory T cells in human peripheral blood. Eur. J. Immunol. 40, 1099–1106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen, X. et al. Cutting edge: expression of TNFR2 defines a maximally suppressive subset of mouse CD4+CD25+FoxP3+ T regulatory cells: applicability to tumor-infiltrating T regulatory cells. J. Immunol. 180, 6467–6471 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Hamano, R., Huang, J., Yoshimura, T., Oppenheim, J. J. & Chen, X. TNF optimally activates regulatory T cells by inducing TNF receptor superfamily members TNFR2, 4-1BB and OX40. Eur. J. Immunol. 41, 2010–2020 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Grinberg-Bleyer, Y. et al. Pathogenic T cells have a paradoxical protective effect in murine autoimmune diabetes by boosting Tregs. J. Clin. Invest. 120, 4558–4568 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Baeyens, A. et al. Effector T cells boost regulatory T cell expansion by IL-2, TNF, OX40, and plasmacytoid dendritic cells depending on the immune context. J. Immunol. 194, 999–1010 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Zhou, Q., Hu, Y., Howard, O. M., Oppenheim, J. J. & Chen, X. In vitro generated Th17 cells support the expansion and phenotypic stability of CD4+Foxp3+ regulatory T cells in vivo. Cytokine 65, 56–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Okubo, Y., Mera, T., Wang, L. & Faustman, D. L. Homogeneous expansion of human T-regulatory cells via tumor necrosis factor receptor 2. Sci. Rep. 3, 3153 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Urbano, P. C. M., Koenen, H., Joosten, I. & He, X. An autocrine TNFα-tumor necrosis factor receptor 2 loop promotes epigenetic effects inducing human Treg stability in vitro. Front. Immunol. 9, 573 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Chen, X. et al. TNFR2 is critical for the stabilization of the CD4+Foxp3+ regulatory T. cell phenotype in the inflammatory environment. J. Immunol. 190, 1076–1084 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Housley, W. J. et al. Natural but not inducible regulatory T cells require TNF-α signaling for in vivo function. J. Immunol. 186, 6779–6787 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Santinon, F. et al. Involvement of tumor necrosis factor receptor type II in FoxP3 stability and as a marker of Treg cells specifically expanded by anti-tumor necrosis factor treatments in rheumatoid arthritis. Arthritis Rheumatol. 72, 576–587 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Ban, L. et al. Strategic internal covalent cross-linking of TNF produces a stable TNF trimer with improved TNFR2 signaling. Mol. Cell Ther. 3, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Chopra, M. et al. Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion. J. Exp. Med. 213, 1881–1900 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. He, X. et al. A TNFR2-agonist facilitates high purity expansion of human low purity Treg cells. PLoS ONE 11, e0156311 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Fischer, R. et al. Selective activation of tumor necrosis factor receptor II induces antiinflammatory responses and alleviates experimental arthritis. Arthritis Rheumatol. 70, 722–735 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Joedicke, J. J. et al. Activated CD8+ T cells induce expansion of Vβ5+ regulatory T cells via TNFR2 signaling. J. Immunol. 193, 2952–2960 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Lamontain, V. et al. Stimulation of TNF receptor type 2 expands regulatory T cells and ameliorates established collagen-induced arthritis in mice. Cell Mol. Immunol. 16, 65–74 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Nagar, M. et al. TNF activates a NF-κB-regulated cellular program in human CD45RA regulatory T cells that modulates their suppressive function. J. Immunol. 184, 3570–3581 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Wang, J. et al. TNFR2 ligation in human T regulatory cells enhances IL2-induced cell proliferation through the non-canonical NF-κB pathway. Sci. Rep. 8, 12079 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Bittner, S. & Ehrenschwender, M. Multifaceted death receptor 3 signaling-promoting survival and triggering death. FEBS Lett. 591, 2543–2555 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. He, T. et al. The p38 MAPK inhibitor SB203580 abrogates tumor necrosis factor-induced proliferative expansion of mouse CD4+Foxp3+ regulatory T cells. Front. Immunol. 9, 1556 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Nie, H. et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat. Med. 19, 322–328 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Stoop, J. N. et al. Tumor necrosis factor α inhibits the suppressive effect of regulatory T cells on the hepatitis B virus-specific immune response. Hepatology 46, 699–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Valencia, X. et al. TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood 108, 253–261 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zanin-Zhorov, A. et al. Protein kinase C-theta mediates negative feedback on regulatory T cell function. Science 328, 372–376 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pierini, A. et al. TNF-α priming enhances CD4+FoxP3+ regulatory T-cell suppressive function in murine GVHD prevention and treatment. Blood 128, 866–871 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Leclerc, M. et al. Control of GVHD by regulatory T cells depends on TNF produced by T cells and TNFR2 expressed by regulatory T cells. Blood 128, 1651–1659 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Ronin, E. et al. Tissue-restricted control of established central nervous system autoimmunity by TNF receptor 2-expressing Treg cells. Proc. Natl Acad. Sci. USA 118, e2014043118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zaragoza, B. et al. Suppressive activity of human regulatory T cells is maintained in the presence of TNF. Nat. Med. 22, 16–17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Miyara, M. et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30, 899–911 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Chen, X. et al. Expression of costimulatory TNFR2 induces resistance of CD4+FoxP3 conventional T cells to suppression by CD4+FoxP3+ regulatory T cells. J. Immunol. 185, 174–182 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Yamaguchi, T., Wing, J. B. & Sakaguchi, S. Two modes of immune suppression by Foxp3+ regulatory T cells under inflammatory or non-inflammatory conditions. Semin. Immunol. 23, 424–430 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Chaudhry, A. & Rudensky, A. Y. Control of inflammation by integration of environmental cues by regulatory T cells. J. Clin. Invest. 123, 939–944 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Williams, L. M. & Rudensky, A. Y. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat. Immunol. 8, 277–284 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Chinen, T. et al. An essential role for the IL-2 receptor in Treg cell function. Nat. Immunol. 17, 1322–1333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Feng, Y. et al. Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell 158, 749–763 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gao, Y. et al. Inflammation negatively regulates FOXP3 and regulatory T-cell function via DBC1. Proc. Natl Acad. Sci. USA 112, E3246–E3254 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Xie, M. et al. NF-κB-driven miR-34a impairs Treg/Th17 balance via targeting Foxp3. J. Autoimmun. 102, 96–113 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Molinero, L. L., Miller, M. L., Evaristo, C. & Alegre, M. L. High TCR stimuli prevent induced regulatory T cell differentiation in a NF-κB-dependent manner. J. Immunol. 186, 4609–4617 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Zhang, Q. et al. TNF-α impairs differentiation and function of TGF-β-induced Treg cells in autoimmune diseases through Akt and Smad3 signaling pathway. J. Mol. Cell Biol. 5, 85–98 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Mahmud, S. A. et al. Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells. Nat. Immunol. 15, 473–481 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nadkarni, S., Mauri, C. & Ehrenstein, M. R. Anti-TNF-α therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-β. J. Exp. Med. 204, 33–39 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. So, T. & Croft, M. Cutting edge: OX40 inhibits TGF-β- and antigen-driven conversion of naive CD4 T cells into CD25+Foxp3+ T cells. J. Immunol. 179, 1427–1430 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Madireddi, S. et al. SA-4-1BBL costimulation inhibits conversion of conventional CD4+ T cells into CD4+ FoxP3+ T regulatory cells by production of IFN-γ. PLoS ONE 7, e42459 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Khan, S. Q. et al. Cloning, expression, and functional characterization of TL1A-Ig. J. Immunol. 190, 1540–1550 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Lina, C., Conghua, W., Nan, L. & Ping, Z. Combined treatment of etanercept and MTX reverses Th1/Th2, Th17/Treg imbalance in patients with rheumatoid arthritis. J. Clin. Immunol. 31, 596–605 (2011).

    Article  PubMed  CAS  Google Scholar 

  151. Toubi, E. et al. Increased spontaneous apoptosis of CD4+CD25+ T cells in patients with active rheumatoid arthritis is reduced by infliximab. Ann. NY Acad. Sci. 1051, 506–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Cao, D., van Vollenhoven, R., Klareskog, L., Trollmo, C. & Malmstrom, V. CD25brightCD4+ regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthritis Res. Ther. 6, R335–R346 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Dombrecht, E. J. et al. Influence of anti-tumor necrosis factor therapy (adalimumab) on regulatory T cells and dendritic cells in rheumatoid arthritis. Clin. Exp. Rheumatol. 24, 31–37 (2006).

    CAS  PubMed  Google Scholar 

  154. McGovern, J. L. et al. Th17 cells are restrained by Treg cells via the inhibition of interleukin-6 in patients with rheumatoid arthritis responding to anti-tumor necrosis factor antibody therapy. Arthritis Rheum. 64, 3129–3138 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. van Amelsfort, J. M., Jacobs, K. M., Bijlsma, J. W., Lafeber, F. P. & Taams, L. S. CD4+CD25+ regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum. 50, 2775–2785 (2004).

    Article  PubMed  Google Scholar 

  156. Cao, D. et al. Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis. Eur. J. Immunol. 33, 215–223 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Herrath, J. et al. The inflammatory milieu in the rheumatic joint reduces regulatory T-cell function. Eur. J. Immunol. 41, 2279–2290 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Komatsu, N. et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20, 62–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Chen, Z. et al. The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity 39, 272–285 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. van Loosdregt, J. et al. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity 39, 259–271 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Huang, Z. et al. Anti-TNF-α therapy improves Treg and suppresses Teff in patients with rheumatoid arthritis. Cell Immunol. 279, 25–29 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Blache, C. et al. Number and phenotype of rheumatoid arthritis patients’ CD4+CD25hi regulatory T cells are not affected by adalimumab or etanercept. Rheumatology 50, 1814–1822 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Hvas, C. L. et al. Discrete changes in circulating regulatory T cells during infliximab treatment of Crohn’s disease. Autoimmunity 43, 325–333 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Boschetti, G. et al. Therapy with anti-TNFα antibody enhances number and function of Foxp3+ regulatory T cells in inflammatory bowel diseases. Inflamm. Bowel Dis. 17, 160–170 (2011).

    Article  PubMed  Google Scholar 

  165. Kato, K. et al. Infliximab therapy impacts the peripheral immune system of immunomodulator and corticosteroid naive patients with Crohn’s disease. Gut Liver 5, 37–45 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Li, Z. et al. Reciprocal changes of Foxp3 expression in blood and intestinal mucosa in IBD patients responding to infliximab. Inflamm. Bowel Dis. 16, 1299–1310 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Ricciardelli, I., Lindley, K. J., Londei, M. & Quaratino, S. Anti tumour necrosis-α therapy increases the number of FOXP3 regulatory T cells in children affected by Crohn’s disease. Immunology 125, 178–183 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Veltkamp, C. et al. Apoptosis of regulatory T lymphocytes is increased in chronic inflammatory bowel disease and reversed by anti-TNFα treatment. Gut 60, 1345–1353 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Calleja, S. et al. Adalimumab specifically induces CD3+ CD4+ CD25high Foxp3+ CD127 T-regulatory cells and decreases vascular endothelial growth factor plasma levels in refractory immuno-mediated uveitis: a non-randomized pilot intervention study. Eye 26, 468–477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sugita, S., Yamada, Y., Kaneko, S., Horie, S. & Mochizuki, M. Induction of regulatory T cells by infliximab in Behcet’s disease. Invest. Ophthalmol. Vis. Sci. 52, 476–484 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Xueyi, L. et al. Levels of circulating Th17 cells and regulatory T cells in ankylosing spondylitis patients with an inadequate response to anti-TNF-α therapy. J. Clin. Immunol. 33, 151–161 (2013).

    Article  PubMed  CAS  Google Scholar 

  172. Wehrens, E. J. et al. Anti-tumor necrosis factor alpha targets protein kinase B/c-Akt-induced resistance of effector cells to suppression in juvenile idiopathic arthritis. Arthritis Rheum. 65, 3279–3284 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Verwoerd, A. et al. Infliximab therapy balances regulatory T cells, tumour necrosis factor receptor 2 (TNFR2) expression and soluble TNFR2 in sarcoidosis. Clin. Exp. Immunol. 185, 263–270 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Nguyen, D. X. et al. Regulatory T cells as a biomarker for response to adalimumab in rheumatoid arthritis. J. Allergy Clin. Immunol. 142, 978–980.e9 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Chen, X., Oppenheim, J. J., Winkler-Pickett, R. T., Ortaldo, J. R. & Howard, O. M. Glucocorticoid amplifies IL-2-dependent expansion of functional FoxP3+CD4+CD25+ T regulatory cells in vivo and enhances their capacity to suppress EAE. Eur. J. Immunol. 36, 2139–2149 (2006).

    Article  CAS  PubMed  Google Scholar 

  176. Kim, D. et al. Anti-inflammatory roles of glucocorticoids are mediated by Foxp3+ regulatory T cells via a miR-342-dependent mechanism. Immunity 53, 581–596 (2020).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  177. Byng-Maddick, R. & Ehrenstein, M. R. The impact of biological therapy on regulatory T cells in rheumatoid arthritis. Rheumatology 54, 768–775 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Di Sabatino, A. et al. Peripheral regulatory T cells and serum transforming growth factor-β: relationship with clinical response to infliximab in Crohn’s disease. Inflamm. Bowel Dis. 16, 1891–1897 (2010).

    Article  PubMed  Google Scholar 

  179. Zou, H., Li, R., Hu, H., Hu, Y. & Chen, X. Modulation of regulatory T cell activity by TNF receptor type II-targeting pharmacological agents. Front. Immunol. 9, 594 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Fischer, R., Kontermann, R. E. & Pfizenmaier, K. Selective targeting of TNF receptors as a novel therapeutic approach. Front. Cell Dev. Biol. 8, 401 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Mukai, Y. et al. Structure-function relationship of tumor necrosis factor (TNF) and its receptor interaction based on 3D structural analysis of a fully active TNFR1-selective TNF mutant. J. Mol. Biol. 385, 1221–1229 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. Ando, D. et al. Creation of mouse TNFR2-selective agonistic TNF mutants using a phage display technique. Biochem. Biophys. Rep. 7, 309–315 (2016).

    PubMed  PubMed Central  Google Scholar 

  183. Van Ostade, X., Vandenabeele, P., Tavernier, J. & Fiers, W. Human tumor necrosis factor mutants with preferential binding to and activity on either the R55 or R75 receptor. Eur. J. Biochem. 220, 771–779 (1994).

    Article  PubMed  Google Scholar 

  184. McCann, F. E. et al. Selective tumor necrosis factor receptor I blockade is antiinflammatory and reveals immunoregulatory role of tumor necrosis factor receptor II in collagen-induced arthritis. Arthritis Rheumatol. 66, 2728–2738 (2014).

    Article  CAS  PubMed  Google Scholar 

  185. Williams, S. K. et al. Anti-TNFR1 targeting in humanized mice ameliorates disease in a model of multiple sclerosis. Sci. Rep. 8, 13628 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Steeland, S. et al. TNFR1 inhibition with a nanobody protects against EAE development in mice. Sci. Rep. 7, 13646 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Williams, S. K. et al. Antibody-mediated inhibition of TNFR1 attenuates disease in a mouse model of multiple sclerosis. PLoS ONE 9, e90117 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Zalevsky, J. et al. Dominant-negative inhibitors of soluble TNF attenuate experimental arthritis without suppressing innate immunity to infection. J. Immunol. 179, 1872–1883 (2007).

    Article  CAS  PubMed  Google Scholar 

  189. Shibata, H. et al. The treatment of established murine collagen-induced arthritis with a TNFR1-selective antagonistic mutant TNF. Biomaterials 30, 6638–6647 (2009).

    Article  CAS  PubMed  Google Scholar 

  190. Brambilla, R. et al. Inhibition of soluble tumour necrosis factor is therapeutic in experimental autoimmune encephalomyelitis and promotes axon preservation and remyelination. Brain 134, 2736–2754 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Nomura, T. et al. Therapeutic effect of PEGylated TNFR1-selective antagonistic mutant TNF in experimental autoimmune encephalomyelitis mice. J. Control. Rel. 149, 8–14 (2011).

    Article  CAS  Google Scholar 

  192. Taoufik, E. et al. Transmembrane tumour necrosis factor is neuroprotective and regulates experimental autoimmune encephalomyelitis via neuronal nuclear factor-κB. Brain 134, 2722–2735 (2011).

    Article  PubMed  Google Scholar 

  193. Maier, O., Fischer, R., Agresti, C. & Pfizenmaier, K. TNF receptor 2 protects oligodendrocyte progenitor cells against oxidative stress. Biochem. Biophys. Res. Commun. 440, 336–341 (2013).

    Article  CAS  PubMed  Google Scholar 

  194. Rauert, H. et al. Membrane tumor necrosis factor (TNF) induces p100 processing via TNF receptor-2 (TNFR2). J. Biol. Chem. 285, 7394–7404 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Dong, Y. et al. Essential protective role of tumor necrosis factor receptor 2 in neurodegeneration. Proc. Natl Acad. Sci. USA 113, 12304–12309 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Fischer, R. et al. TNFR2 promotes Treg-mediated recovery from neuropathic pain across sexes. Proc. Natl Acad. Sci. USA 116, 17045–17050 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Klatzmann, D. & Abbas, A. K. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat. Rev. Immunol. 15, 283–294 (2015).

    Article  CAS  PubMed  Google Scholar 

  198. Grinberg-Bleyer, Y. et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J. Exp. Med. 207, 1871–1878 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Tang, Q. et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28, 687–697 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Mori, L., Iselin, S., De Libero, G. & Lesslauer, W. Attenuation of collagen-induced arthritis in 55-kDa TNF receptor type 1 (TNFR1)-IgG1-treated and TNFR1-deficient mice. J. Immunol. 157, 3178–3182 (1996).

    Article  CAS  PubMed  Google Scholar 

  201. Tseng, W. Y. et al. TNF receptor 2 signaling prevents DNA methylation at the Foxp3 promoter and prevents pathogenic conversion of regulatory T cells. Proc. Natl Acad. Sci. USA 116, 21666–21672 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Bluml, S. et al. Antiinflammatory effects of tumor necrosis factor on hematopoietic cells in a murine model of erosive arthritis. Arthritis Rheum. 62, 1608–1619 (2010).

    Article  PubMed  CAS  Google Scholar 

  203. Eugster, H. P. et al. Severity of symptoms and demyelination in MOG-induced EAE depends on TNFR1. Eur. J. Immunol. 29, 626–632 (1999).

    Article  CAS  PubMed  Google Scholar 

  204. Suvannavejh, G. C. et al. Divergent roles for p55 and p75 tumor necrosis factor receptors in the pathogenesis of MOG(35-55)-induced experimental autoimmune encephalomyelitis. Cell Immunol. 205, 24–33 (2000).

    Article  CAS  PubMed  Google Scholar 

  205. Kassiotis, G. & Kollias, G. Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level: implications for pathogenesis and therapy of autoimmune demyelination. J. Exp. Med. 193, 427–434 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Miller, P. G., Bonn, M. B., Franklin, C. L., Ericsson, A. C. & McKarns, S. C. TNFR2 deficiency acts in concert with gut microbiota to precipitate spontaneous sex-biased central nervous system demyelinating autoimmune disease. J. Immunol. 195, 4668–4684 (2015).

    Article  CAS  PubMed  Google Scholar 

  207. Wang, Y. L. et al. Targeting pre-ligand assembly domain of TNFR1 ameliorates autoimmune diseases — an unrevealed role in downregulation of Th17 cells. J. Autoimmun. 37, 160–170 (2011).

    Article  CAS  PubMed  Google Scholar 

  208. Fischer, R. et al. Exogenous activation of tumor necrosis factor receptor 2 promotes recovery from sensory and motor disease in a model of multiple sclerosis. Brain Behav. Immun. 81, 247–259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks current and past members of his laboratory for their hard work and fruitful and passionate exchanges on the effects of TNF on Treg cells. His research work is supported by Agence Nationale de la Recherche (grants ANR-15-CE15-0015-03 and ANR-17-CE15-0030-01) and Fondation pour la Recherche Médicale (équipe FRM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit L. Salomon.

Ethics declarations

Competing interests

B.L.S. declares that he received consultancy fees from HiFiBio Therapeutics regarding the applications of TNFR2 agonists and antagonists in cancer and autoimmunity.

Additional information

Peer review information

Nature Reviews Rheumatology thanks R. Williams, M. Ehrenstein and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salomon, B.L. Insights into the biology and therapeutic implications of TNF and regulatory T cells. Nat Rev Rheumatol 17, 487–504 (2021). https://doi.org/10.1038/s41584-021-00639-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-021-00639-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research