Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Second-harmonic generation and the conservation of spatiotemporal orbital angular momentum of light

Abstract

Light with spatiotemporal orbital angular momentum (ST-OAM) is a recently discovered type of structured and localized electromagnetic field. This field carries characteristic space–time spiral phase structure and transverse intrinsic OAM. Here, we present the generation and characterization of the second harmonic of ST-OAM pulses. We uncover the conservation of transverse OAM in a second-harmonic generation process, where the space–time topological charge of the fundamental field is doubled along with the optical frequency. Our experiment thus suggests a general ST-OAM nonlinear scaling rule, analogous to that in conventional OAM of light. Furthermore, we observe that the topology of a second-harmonic ST-OAM pulse can be modified by complex spatiotemporal astigmatism, giving rise to multiple phase singularities separated in space and time. Our study opens a new route for nonlinear conversion and scaling of light carrying ST-OAM, with the potential for driving other secondary ST-OAM sources of electromagnetic fields and beyond.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Second-harmonic ST-OAM pulse generation and characterization.
Fig. 2: Experimentally reconstructed amplitude and phase of ST-OAM pulses.
Fig. 3: Modal decomposition of the ST-OAM pulses from experiments.
Fig. 4: Experimentally extracted spatiotemporal momentum density and energy density flux of ST-OAM pulses.

Similar content being viewed by others

Data availability

The datasets utilized to prepare the data presented in this manuscript are available free of charge from the corresponding author under reasonable request.

References

  1. Coullet, P., GIL, L. & Rocca, F. Optical vortices. Opt. Commun. 73, 403–408 (1989).

    Article  ADS  Google Scholar 

  2. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 31–35 (1992).

    Article  Google Scholar 

  3. Bliokh, K. Y. & Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep. 592, 1–38 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  4. Curtis, J. E. & Grier, D. G. Structure of optical vortices. Phys. Rev. Lett. 90, 133901 (2003).

    Article  ADS  Google Scholar 

  5. Vaziri, A., Pan, J. W., Jennewein, T., Weihs, G. & Zeilinger, A. Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum. Phys. Rev. Lett. 91, 227902 (2003).

    Article  ADS  Google Scholar 

  6. Wang, B. et al. Coherent Fourier scatterometry using orbital angular momentum beams for defect detection. Opt. Express 29, 3342–3358 (2021).

    Article  ADS  Google Scholar 

  7. Rego, L. et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science 364, eaaw9486 (2019).

    Article  ADS  Google Scholar 

  8. Sukhorukov, A. P. & Yangirova, V. V. Spatio-temporal vortices: properties, generation and recording. Nonlinear Opt. Appl. 5949, 594906 (2005).

    Article  Google Scholar 

  9. Bliokh, K. Y. & Nori, F. Spatiotemporal vortex beams and angular momentum. Phys. Rev. A 86, 033824 (2012).

    Article  ADS  Google Scholar 

  10. Jhajj, N. et al. Spatiotemporal optical vortices. Phys. Rev. X 6, 031037 (2016).

    Google Scholar 

  11. Hancock, S. W., Zahedpour, S., Goffin, A. & Milchberg, H. M. Free-space propagation of spatiotemporal optical vortices. Optica 6, 1547–1553 (2019).

    Article  ADS  Google Scholar 

  12. Chong, A., Wan, C., Chen, J. & Zhan, Q. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photon. 14, 350–354 (2020).

    Article  ADS  Google Scholar 

  13. Dholakia, K., Simpson, N. B., Padgett, M. J. & Allen, L. Second-harmonic generation and the orbital angular momentum of light. Phys. Rev. A 54, 3742–3745 (1996).

    Article  ADS  Google Scholar 

  14. Courtial, J., Dholakia, K., Allen, L. & Padgett, M. J. Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre–Gaussian modes. Phys. Rev. A 56, 273–276 (1997).

    Article  Google Scholar 

  15. Hernández-García, C., Picón, A., San Román, J. & Plaja, L. Attosecond extreme ultraviolet vortices from high-order harmonic generation. Phys. Rev. Lett. 111, 083602 (2013).

    Article  ADS  Google Scholar 

  16. Strohaber, J. et al. Coherent transfer of optical orbital angular momentum in multi-order Raman sideband generation. Opt. Lett. 37, 3411–3413 (2012).

    Article  ADS  Google Scholar 

  17. Dorney, K. M. et al. Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin–orbit momentum conservation. Nat. Photon. 13, 123–130 (2019).

    Article  ADS  Google Scholar 

  18. Bazhenov, V. Y., Soskin, M. S. & Vasnetsov, M. V. Screw dislocations in light wavefronts. J. Mod. Opt. 39, 985–990 (1992).

    Article  ADS  Google Scholar 

  19. Esashi, Y. et al. Ptychographic amplitude and phase reconstruction of bichromatic vortex beams. Opt. Express 26, 34007–34015 (2018).

    Article  ADS  Google Scholar 

  20. Hickmann, J. M., Fonseca, E. J. S., Soares, W. C. & Chávez-Cerda, S. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Phys. Rev. Lett. 105, 053904 (2010).

    Article  ADS  Google Scholar 

  21. Hancock, S. W., Zahedpour, S. & Milchberg, H. M. Orbital angular momentum conservation in second- harmonic generation with spatiotemporal optical vortices. In Frontiers in Optics/Laser Science, OSA Technical Digest FM7C.6 (Optical Society of America, 2020).

  22. Berry, M. V. Optical currents. J. Opt. A Pure Appl. Opt 11, 094001 (2009).

    Article  ADS  Google Scholar 

  23. Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Dual electromagnetism: helicity, spin, momentum and angular momentum. New J. Phys. 18, 033026 (2013).

    Article  Google Scholar 

  24. Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Optical momentum, spin and angular momentum in dispersive media. Phys. Rev. Lett. 119, 073901 (2017).

    Article  ADS  Google Scholar 

  25. Philbin, T. G. & Allanson, O. Optical angular momentum in dispersive media. Phys. Rev. A 86, 055802 (2012).

    Article  ADS  Google Scholar 

  26. Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Optical momentum and angular momentum in complex media: from the Abraham–Minkowski debate to unusual properties of surface plasmon-polaritons. New J. Phys. 19, 123014 (2017).

    Article  ADS  Google Scholar 

  27. Faccio, D. et al. Experimental energy-density flux characterization of ultrashort laser pulse filaments. Opt. Express 17, 8193–8200 (2009).

    Article  ADS  Google Scholar 

  28. Lotti, A., Couairon, A., Faccio, D. & Di Trapani, P.Energy-flux characterization of conical and space-time coupled wave packets. Phys. Rev. A 81, 023810 (2010).

    Article  ADS  Google Scholar 

  29. Sidick, E., Knoesen, A. & Dienes, A. Ultrashort-pulse second-harmonic generation. I. Transform-limited fundamental pulses. J. Opt. Soc. Am. B 12, 1704–1712 (1995).

    Article  ADS  Google Scholar 

  30. Sidick, E., Dienes, A. & Knoesen, A. Ultrashort-pulse second-harmonic generation. II. Non-transform-limited fundamental pulses. J. Opt. Soc. Am. B 12, 1713–1722 (1995).

    Article  ADS  Google Scholar 

  31. Vieira, J. et al. Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering. Nat. Commun. 7, 10371 (2016).

    Article  ADS  Google Scholar 

  32. Tang, Y. et al. Harmonic spin–orbit angular momentum cascade in nonlinear optical crystals. Nat. Photon. 14, 658–662 (2020).

    Article  ADS  Google Scholar 

  33. Bliokh, K. Y. et al. Theory and applications of free-electron vortex states. Phys. Rep. 690, 1–70 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  34. Chen, J., Wan, C., Chong, A. & Zhan, Q. Subwavelength focusing of a spatio-temporal wave packet with transverse orbital angular momentum. Opt. Express 28, 18472–18478 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from an AFOSR MURI grant (FA9550-16-1-0121). N.J.B. acknowledges support from the National Science Foundation Graduate Research Fellowships (grant no. DGE-1650115).

Author information

Authors and Affiliations

Authors

Contributions

C.-T.L. conceived the project. G.G. conducted and designed the experiment. C.-T.L. and G.G. both analysed the data. M.M.M. and H.C.K. proposed the research thrust, supervised the research, developed the generation and measurement capabilities, and applications. All authors contributed to the discussion and writing of the manuscript.

Corresponding author

Correspondence to Chen-Ting Liao.

Ethics declarations

Competing interests

M.M.M. and H.C.K. have a financial interest in KMLabs. The other authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and Discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, G., Brooks, N.J., Kapteyn, H.C. et al. Second-harmonic generation and the conservation of spatiotemporal orbital angular momentum of light. Nat. Photon. 15, 608–613 (2021). https://doi.org/10.1038/s41566-021-00841-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00841-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing