Skip to main content
Log in

Applications of Liutex-based force field models for cavitation simulation

  • Special Column on the Liutex Force Field Model (Guest Editor De-Cheng Wan)
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

When studying the flow dynamics and the characteristics of fluid motion, vortex structure with their interactions is the key issue. In the present work, a vortex control method is investigated based on the vortex identification system of Liutex. The numerical study is carried out in OpenFOAM by directly adding a source term to the Navier-Stokes equations, which is called the centripetal force model in Liutex method. A 2-D test case is examined to justify the proposed method in cavitating flow around Clark-Y hydrofoil, the simulation results show that the improved Liutex solver is feasible. Methodologies of controlling the rotation strength of vortices are able to change the flow field and suppress the cavitation. The applicability of vortex-based control method in 3-D flow field is also studied. The results show that cavitation surrounded by particular vortex can be effectively influenced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo X. W., Ji B., Tsujimoto Y. A review of cavitation in hydraulic machinery [J]. Journal of Hydrodynamics, 2016, 28(3): 335–358.

    Article  Google Scholar 

  2. Huang B., Qiu S. C., Li X. B. et al. A review of transient flow structure and unsteady mechanism of cavitating flow [J]. Journal of Hydrodynamics, 2019, 31(2): 429–444.

    Article  Google Scholar 

  3. Timoshevskiy M. V., Ilyushin B. B., Pervunin K. S. Statistical structure of the velocity field in cavitating flow around a 2D hydrofoil [J]. International Journal of Heat and Fluid Flow, 2020, 85: 108646.

    Article  Google Scholar 

  4. Zhang X., Wang J., Wan D. An improved multi-scale two phase method for bubbly flows [J]. International Journal of Multiphase Flow, 2020, 133: 103460.

    Article  MathSciNet  Google Scholar 

  5. Cheng H., Long X., Ji B. et al. A new Euler-Lagrangian cavitation model for tip-vortex cavitation with the effect of non-condensable gas [J]. International Journal of Multiphase Flow, 2021, 134: 103441.

    Article  MathSciNet  Google Scholar 

  6. Zhang M., Huang B., Wu Q. et al. The interaction between the transient cavitating flow and hydrodynamic performance around a pitching hydrofoil [J]. Renewable Energy, 2020, 161: 1276–1291.

    Article  Google Scholar 

  7. Liu C., Gao Y. S., Dong X. R. et al. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems [J]. Journal of Hydrodynamics, 2019, 31(2): 205–223.

    Article  Google Scholar 

  8. Hunt J., Wray A., Moin P. Eddies, streams, and convergence zones in turbulent flows [R]. Proceedings of the Summer Program. Center for Turbulence Research Report CTR-S88, 1988, 193–208.

  9. Jeong J., Hussain F. On the identification of a vortex [J]. Journal of Fluid Mechanics, 1995, 285: 69–94.

    Article  MathSciNet  Google Scholar 

  10. Chong M. S., Perry A. E., Cantwell B. J. A general classification of three-dimensional flow fields [J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(5): 765–777.

    Article  MathSciNet  Google Scholar 

  11. Cao L. S., Huang F. L., Liu C. et al. Vortical structures and wakes of a sphere in homogeneous and density stratified fluid [J]. Journal of Hydrodynamics, 2021, 33(2): 207–215.

    Article  Google Scholar 

  12. Wang Y., Yang Y., Yang G. et al. DNS study on vortex and vorticity in late boundary layer transition [J]. Communications in Computational Physics, 2017, 22(2): 441–459.

    Article  MathSciNet  Google Scholar 

  13. Liu C., Gao Y., Tian S. et al. Rortex-A new vortex vector definition and vorticity tensor and vector decompositions [J]. Physics of Fluids, 2018, 30(3): 034103.

    Article  Google Scholar 

  14. Dong X., Gao Y., Liu C. New normalized Rortex/vortex identification method [J]. Physics of Fluids, 2019, 31(1): 011701.

    Article  Google Scholar 

  15. Xu H., Cai X. S., Liu C. Liutex (vortex) core definition and automatic identification for turbulence vortex structures [J]. Journal of Hydrodynamics, 2019, 31(5): 857–863.

    Article  Google Scholar 

  16. Wang Y. Q., Gao Y. S., Xu H. et al. Liutex theoretical system and six core elements of vortex identification [J]. Journal of Hydrodynamics, 2020, 32(2): 197–211.

    Article  Google Scholar 

  17. Zhao W. W., Wang Y. Q., Chen S. T. et al. Parametric study of Liutex-based force field models [J]. Journal of Hydrodynamics, 2021, 33(1): 86–92.

    Article  Google Scholar 

  18. Gao Y., Liu C. Rortex and comparison with eigenvalue-based vortex identification criteria [J]. Physics of Fluids, 2018, 30(8): 085107.

    Article  Google Scholar 

  19. Zhao W. W., Wang J. H., Wan D. C. Vortex identification methods in marine hydrodynamics [J]. Journal of Hydrodynamics. 2020, 32(2): 286–295.

    Article  Google Scholar 

  20. Wang Y. Q., Yu, H. D., Zhao W. W. et al. Liutex-based vortex control with implications for cavitation suppression [J]. Journal of Hydrodynamics, 2021, 33(1): 74–85.

    Article  Google Scholar 

  21. Yu H. D., Wang Y. Q. Liutex-based vortex dynamics: A preliminary study [J]. Journal of Hydrodynamics, 2020, 32(6): 1217–1220.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-cheng Wan.

Additional information

Projects supported by the National Key Research and Development Program of China (Grant Nos. 2019YFC0312400, 2019YFB1704200), the National Natural Science Foundation of China (Grant Nos. 51879159, 51909160).

Biography: Min-sheng Zhao (1994-), Male, Ph. D. Candidate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Ms., Zhao, Ww., Wan, Dc. et al. Applications of Liutex-based force field models for cavitation simulation. J Hydrodyn 33, 488–493 (2021). https://doi.org/10.1007/s42241-021-0049-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-021-0049-1

Key words

Navigation