Skip to main content

Advertisement

Log in

Effect of an Equal Dose of Polymetallic Pollution on the Microbiological Characteristics of Two Soils with Different Organic Carbon Contents

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Reliable stable indicators are very important for assessing soil quality. This paper compares the dynamics of microbial parameters in two different soils (rich/poor in organic carbon), contaminated in laboratory experiments with an equal dose of heavy metals (HMs) after 30 and 90 days. For this purpose, the changes in the number, biomass, and taxonomic structure of bacterial and fungal communities were assessed in microcosm experiments using an organic carbon–rich ordinary chernozem (Ch-humus-rich soil) and a depleted carbon agrozem (Ag-humus-poor soil), spiked with high concentrations of a zinc, lead, and copper solution (1100 Zn + 660 Cu + 650 Pb mg per kg soil). At the 30th and 90th day from HM contamination, soil samples were collected for analyzing microbial community lipid markers by gas chromatography-mass spectrometry. The results show how both biomass and taxonomic structure of the bacterial and fungal communities analyzed were differently sensitive to HM contamination, depending on the type of soil. The Ag-humus-poor soil microbial community was significantly affected by the HM pollution with an increase in both fungi and bacteria and inside the latter several species changed their percentages. Differently, the Ch-humus-rich soil microbial community was not influenced by the HM addition. However, the negative impact of HM can manifest itself over time, so the microbial structure and its functioning cannot represent accurate indicators of the quality of all soil types. The results show that microbial characteristics should be taken into account only in a comprehensive assessment of soil quality in accordance with ISO 19,204:2017—soil quality TRIAD approach. This approach to environmental risk assessment combines biological data (from bioassay and ecological observations) with chemical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals - Concepts and applications. Chemosphere, 91, 869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075.

    Article  CAS  Google Scholar 

  • Alvarez, H. M. (2010). Biology of Rhodococcus. Springer Verlag Berlin Heidelberg.

  • Approximate permissible concentrations of chemical substances in the soil: Hygienic standards - HN 2.1.7.2511–09. (2009). Federal Center for Hygiene and Epidemiology of Rospotrebnadzor (Russia) Moscow.

  • Bååth, E. (1989). Effects of heavy metals in soil on microbial processes and populations (a review). Water, Air, and Soil Pollution, 47, 335–379. https://doi.org/10.1007/BF00279331.

    Article  Google Scholar 

  • Barra Caracciolo, A., Bustamante, M. A., Nogues, I., Di Lenola, M., Luprano, M. L., & Grenni, P. (2015). Changes in microbial community structure and functioning of a semiarid soil due to the use of anaerobic digestate derived composts and rosemary plants. Geoderma, 245–246, 89–97. https://doi.org/10.1016/j.geoderma.2015.01.021.

    Article  CAS  Google Scholar 

  • Barra Caracciolo, A., Grenni, P., Garbini, G. L., Rolando, L., Campanale, C., Aimola, G., et al. (2020). Characterization of the belowground microbial community in a poplar-phytoremediation strategy of a multi-contaminated soil. Frontiers in Microbiology, 11, 2073. https://doi.org/10.3389/fmicb.2020.02073.

    Article  Google Scholar 

  • Barreiro, A., Fontúrbel, M. T., Lombao, A., Martín, A., Vega, J. A., Fernández, C., et al. (2015). Using phospholipid fatty acid and community level physiological profiling techniques to characterize soil microbial communities following an experimental fire and different stabilization treatments. CATENA, 135, 419–429. https://doi.org/10.1016/j.catena.2014.07.011.

    Article  CAS  Google Scholar 

  • Bobbie, R. J., & White, D. C. (1980). Characterization of benthic microbial community structure by high resolution gas chromatography of fatty acid methyl ester. Applied Environmental Microbiology, 39, 1212–1222. https://doi.org/10.1128/AEM.39.6.1212-1222.1980.

    Article  CAS  Google Scholar 

  • Bouasria, A., Mustafa, T., De Bello, F., Zinger, L., Lemperiere, G., Geremia, R. A., & Choler, P. (2012). Changes in root-associated microbial communities are determined by species specific plant growth responses to stress and disturbance. European Journal of Soil Biology, 52, 59–66. https://doi.org/10.1016/j.ejsobi.2012.06.003.

    Article  Google Scholar 

  • Cabrera, G., Pérez, R., Gomez, J. M., Ábalos, A., & Cantero, D. (2006). Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains. Journal of Hazardous Materials, 135(1–3), 40–46. https://doi.org/10.1016/j.jhazmat.2005.11.058.

    Article  CAS  Google Scholar 

  • Chapman, P. M. (2007). Determining when contamination is pollution - Weight of evidence determinations for sediments and effluents. Environment International, 33(4), 492–501. https://doi.org/10.1016/j.envint.2006.09.001.

    Article  CAS  Google Scholar 

  • Chen, Z., Pan, X., Chen, H., Lin, Z., & Guan, X. (2015). Investigation of lead(II) uptake by Bacillus thuringiensis 016. World Journal of Microbiology and Biotechnology, 31(11), 1729–1736. https://doi.org/10.1007/s11274-015-1923-1.

    Article  CAS  Google Scholar 

  • Di Lenola, M., Barra Caracciolo, A., Grenni, P., Ancona, V., Rauseo, J., Laudicina, V. A., et al. (2018). Effects of apirolio addition and alfalfa and compost treatments on the natural microbial community of a historically PCB-contaminated soil. Water, Air, and Soil Pollution, 229(1–14). https://doi.org/10.1007/s11270-018-3803-4.

  • Fajardo, C., Costa, G., Nande, M., Botías, P., García-Cantalejo, J., & Martín, M. (2019). Pb, Cd, and Zn soil contamination: monitoring functional and structural impacts on the microbiome. Applied Soil Ecology, 135, 56–64. https://doi.org/10.1016/j.apsoil.2018.10.022.

    Article  Google Scholar 

  • Fedoseeva, E. V., Danilova, O. A., Ianutsevich, E. A., Terekhova, V. A., & Tereshina, V. M. (2021). Micromycete lipids and stress. Microbiology, 90, 37–55. https://doi.org/10.1134/S0026261721010045.

    Article  CAS  Google Scholar 

  • Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of the Sciences of the USA, 103(3), 626–631. https://doi.org/10.1073/pnas.0507535103.

    Article  CAS  Google Scholar 

  • Fierer, N., Nemergut, D., Knight, R., & Craine, J. M. (2010). Changes through time: Integrating microorganisms into the study of succession. Research in Microbiology, 161, 635–642. https://doi.org/10.1016/j.resmic.2010.06.002.

    Article  Google Scholar 

  • Gąsiorek, M., Kowalska, J., Mazurek, К, & Pająk, M. (2017). Comprehensive assessment of heavy metal pollution in topsoil of historical urban park on an example of the Planty Park in Krakow (Poland). Chemosphere, 179, 148–158. https://doi.org/10.1016/j.chemosphere.2017.03.106.

    Article  CAS  Google Scholar 

  • Giacometti, C., Demyan, M. S., Cavani, L., et al. (2013). Chemical and microbiological soil quality indicators and their potential to differentiate fertilization regimes in temperate agroecosystems. Applied Soil Ecology, 64, 32–48. https://doi.org/10.1016/j.apsoil.2012.10.002.

    Article  Google Scholar 

  • GN 2.1.7.2511–09. (2009). Tentative allowable concentrations of chemical substances in soil (in Russian).

  • GOST 26213–91. (1993). Soils. Methods for determination of organic matter (in Russian).

  • GOST 26423–85. (1985). Soils. Methods for determination of specific electric conductivity, pH and solid residue of water extract (in Russian).

  • GOST 26713–85. (1985). Organic fertilizers. Method for determination of moisture and dry residue (in Russian).

  • GOST 26484–85. (1986). Soils. Method for determination of exchangeable acidity (in Russian).

  • Green, J. L., Bohannan, B. J. M., & Whitaker, R. J. (2008). Microbial biogeography: From taxonomy to traits. Science, 320, 1039–1043. https://doi.org/10.1126/science.1153475.

    Article  CAS  Google Scholar 

  • Gupta, P., & Diwan, B. (2017). Bacterial exopolysaccharide mediated heavy metal removal: A review on biosynthesis, mechanism and remediation strategies. Biotechnology Reports, 13, 58–71. https://doi.org/10.1016/j.btre.2016.12.006.

    Article  Google Scholar 

  • He, Z., von Nostrand, J. D., Deng, Y., & Zhou, J. (2011). Development and applications of functional gene microarrays in the analysis of the functional diversity composition and structure of microbial communities. Frontiers of Environmental Science & Engineering in China, 5, 1–20. https://doi.org/10.1007/s11783-011-0301-y.

    Article  CAS  Google Scholar 

  • Ho, J., & Chambers, L. G. (2019). Altered soil microbial community composition and function in two shrub encroached marshes with different physicochemical gradients. Soil Biology and Biochemistry, 130, 122–131. https://doi.org/10.1016/j.soilbio.2018.12.004.

    Article  CAS  Google Scholar 

  • ISO 19204. (2017). Soil quality — Procedure for site-specific ecological risk assessment of soil contamination (soil quality TRIAD approach).

  • Johnson, H., Cho, H., & Choudhary, M. (2019). Bacterial heavy metal resistance genes and bioremediation potential. Computational Molecular Bioscience, 9, 1–12. https://doi.org/10.4236/cmb.2019.91001.

    Article  CAS  Google Scholar 

  • Joshi, P. K., Swarup, A., Maheshwari, S., Kumar, R., & Singh, N. (2011). Bioremediation of heavy metals in liquid media through fungi isolated from contaminated sources. Indian Journal of Microbiology, 51, 482–487. https://doi.org/10.1007/s12088-011-0110-9.

    Article  CAS  Google Scholar 

  • Kohler, J., Caravaca, F., Azcon, R., Díaz, G., & Roldan, A. (2016). Suitability of the microbial community composition and function in a semiarid mine soil for assessing phytomanagement practices based on mycorrhizal inoculation and amendment addition. Journal of Environmental Management, 169, 236–246. https://doi.org/10.1016/j.jenvman.2015.12.037.

    Article  CAS  Google Scholar 

  • Kushwaha, A., Hans, N., Kumar, S., & Rani, R. (2018). A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicology and Environmental Safety, 147, 1035–1045. https://doi.org/10.1016/j.ecoenv.2017.09.049.

    Article  CAS  Google Scholar 

  • Lin, Y., Ye, Y., Hu, Y., & Shi, H. (2019). The variation in microbial community structure under different heavy metal contamination levels in paddy soils. Ecotoxicology and Environmental Safety, 180(30), 557–564. https://doi.org/10.1016/j.ecoenv.2019.05.057.

    Article  CAS  Google Scholar 

  • Madigan, A. P., Egidi, E., Bedon, F., Franks, A. E., & Plummer, K. M. (2019). Bacterial and fungal communities are differentially modified by melatonin in agricultural soils under abiotic stress. Frontiers in Microbiology, 10, 2616. https://doi.org/10.3389/fmicb.2019.02616.

    Article  Google Scholar 

  • Mahmoudabadi, E., Sarmadian, F., & Nazary, M. R. (2015). Spatial distribution of soil heavy metals in different land uses of an industrial area of Tehran (Iran). International Journal of Environmental Science and Technology, 12, 3283–3298. https://doi.org/10.1007/s13762-015-0808-z.

    Article  CAS  Google Scholar 

  • Mandal, A., Purakayastha, T. J., Ramana, S., Neenu, S., Bhaduri, D., Chakraborty, K., Manna, M. C., & Subba, R. A. (2014). Status on phytoremediation of heavy metals in India- a review. International Journal of Bio-resource and Stress Management, 5(4), 553–560. https://doi.org/10.5958/0976-4038.2014.00609.5.

  • Mandal, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination - A review. Environmental Geochemistry and Health, 40(6), 2395–2420. https://doi.org/10.1007/s10653-018-0106-z.

    Article  CAS  Google Scholar 

  • McDonald, B. G., deBruyn, A. M. H., Wernick, B. G., Patterson, L., Pellerin, N., & Chapman, P. M. (2007). Design and application of a transparent and scalable weight-of-evidence framework: An example from Wabamun Lake, Alberta, Canada. Integrated Environmental Assessment and Management, 3(4), 476–483. https://doi.org/10.1897/IEAM_2007-017.1.

    Article  Google Scholar 

  • Moreira, H., Pereira, S. I. A., Marques, A. P. G. C., Rangel, A. O. S. S., & Castro, P. M. L. (2019). Effects of soil sterilization and metal spiking in plant growth promoting rhizobacteria selection for phytotechnology purposes. Geoderma, 334, 72–81. https://doi.org/10.1016/j.geoderma.2018.07.025.

    Article  CAS  Google Scholar 

  • Motuzova, G. V., Karpova, E. A., Barsova, N. U., Minkina, T. M., & Mandzhieva, S. S. (2014). Soil contamination with heavy metals as a potential and real risk to the environment. Journal of Geochemical Exploration, 144(PB), 241–246. https://doi.org/10.1016/j.gexplo.2014.01.026.

    Article  CAS  Google Scholar 

  • Nunes, M. R., Karlen, D. L., Veum, K. S., et al. (2020). Biological soil health indicators respond to tillage intensity: A US meta-analysis. Geoderma, 369, 114335. https://doi.org/10.1016/j.geoderma.2020.114335.

    Article  CAS  Google Scholar 

  • Oladipo, O. G., Awotoye, O. O., Olayinka, A., Bezuidenhout, C. C., & Maboeta, M. S. (2018). Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Brazilian Journal of Microbiology, 49, 29–37. https://doi.org/10.1016/j.bjm.2017.06.003.

  • Ololade, I. A. (2014). An assessment of heavy-metal contamination in soils within auto-mechanic workshops using enrichment and contamination factors with geoaccumulation indexes. Journal of Environmental Protection, 5, 970–982. https://doi.org/10.4236/jep.2014.511098.

    Article  CAS  Google Scholar 

  • Osipov, G. A., & Turova, E. S. (1997). Studying species composition of microbial communities with the use of gas chromatography-mass spectrometry: Microbial community of kaolin. FEMS Microbiology Reviews, 20, 437–446.

    Article  CAS  Google Scholar 

  • Pagès, A., Grice, K., Welsh, D. T., Teasdale, P. T., Van Kranendonk, M. J., & Greenwood, P. (2015). Lipid biomarker and isotopic study of community distribution and biomarker preservation in a laminated microbial mat from Shark Bay Western Australia. Microbial Ecology, 70(2), 459–472. https://doi.org/10.1007/s00248-015-0598-3.

    Article  CAS  Google Scholar 

  • Pan, X., Chen, Z., Li, L., Rao, W., Xu, Z., & Guan, X. (2017). Microbial strategy for potential lead remediation: A review study. World Journal of Microbiology and Biotechnology, 33(35), 1–7. https://doi.org/10.1007/s11274-017-2211-z.

    Article  CAS  Google Scholar 

  • Perez-de-Mora, A., Burgos, P., Madejon, E., Cabrera, F., Jaeckel, P., & Schloter, M. (2006). Microbial community structure and function in a soil contaminated by heavy metals: Effects of plant growth and different amendments. Soil Biology and Biochemistry, 38, 327–341. https://doi.org/10.1016/j.soilbio.2005.05.010.

    Article  CAS  Google Scholar 

  • Pukalchik, M. A., Terekhova, V. A., Yakimenko, O. S., Kydralieva, K. A., & Akulova, M. I. (2015). Triad method for assessing the remediation effect of humic preparations on urbanozems. Eurasian Soil Science, 48(6), 654–663. https://doi.org/10.1134/S1064229315060083.

    Article  Google Scholar 

  • Radnaeva, L. D., Bazarsadueva, S. V., Taraskin, V. V., & Tulokhonov A. K. (2020). First data on lipids and microorganisms of deepwater endemic sponge Baikalospongia intermedia and sediments from hydrothermal discharge area of the Frolikha Bay (North Baikal, Siberia). Journal of Great Lakes Research. https://doi.org/10.1016/j.jglr.2019.09.021.

  • Rajapaksha, R. M. C. P., Tobor-Kapłon, M. A., & Bååth, E. (2004). Metal toxicity affects fungal and bacterial activities in soil differently. Applied and Environmental Microbiology, 70(5), 2966–2973. https://doi.org/10.1128/AEM.70.5.2966-2973.2004.

    Article  CAS  Google Scholar 

  • Rose, P. K., & Devi, R. (2018). Heavy metal tolerance and adaptability assessment of indigenous filamentous fungi isolated from industrial wastewater and sludge samples. Beni-Suef University Journal of Basic and Applied Sciences, 7, 688–694. https://doi.org/10.1016/j.bjbas.2018.08.001.

    Article  Google Scholar 

  • Rosencvet, O. A., Fedoseeva, E. V., & Terekhova, V. A. (2019). Lipid biomarkers in environmental assessment of soil biota: Analysis of fatty acids (review). Uspekhi Sovremennoj Biologii, 139(2), 161–177. https://doi.org/10.1134/S0042132419020078(InRussian).

    Article  Google Scholar 

  • Shekhovtsova, N. V., Marakaev, O. A., Pervushina, K. A., & Osipov, G. A. (2013). The underground organ microbial complexes of moorland spotted orchid Dactylorhiza maculata (L) Soó (Orchidaceae). Advances in Bioscience and Biotechnology, 4, 35–42. https://doi.org/10.3934/microbiol.2018.3.541.

    Article  Google Scholar 

  • Spring, St., Schulze, R., Overmann, J., & Schleifer, K.-H. (2000). Identification and characterization of ecologically significant prokaryotes in the sediment of freshwater lakes: Molecular and cultivation studies. FEMS Microbiology Reviews, 24(5), 573–590. https://doi.org/10.1111/j.1574-6976.2000.tb00559.x.

    Article  CAS  Google Scholar 

  • Stead, D. E., Sellwood, J. E., Wilson, J., & Viney, J. (1992). Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. Journal of  Applied Bacteriology, 72, 315–321. https://doi.org/10.1111/j.1365-2672.1992.tb01841.x.

  • Terekhova, V. A. (2007). The importance of mycological studies for soil quality control. Eurasian Soil Science, 40(5), 583–587. https://doi.org/10.1134/S1064229307050158.

    Article  Google Scholar 

  • Terekhova, V. A. (2011). Soil bioassay: Problems and approaches. Eurasian Soil Science, 44(2), 173–179. https://doi.org/10.1134/S1064229311020141.

    Article  Google Scholar 

  • Terekhova, V. A., Verkhovtseva, N. V., Pukalchik, M. A., Vodolazov, I. R., Shitikov, V. K. (2018). Chemodiagnostic by lipid analysis of the microbial community structure in trace metal polluted urban soil. In: V. I. Vasenev et al. (eds) Megacities 2050: Environmental consequences of urbanization. ICLASCSD 2016. Springer Geography. Springer. https://doi.org/10.1007/978-3-319-70557-6_16.

  • Terekhova, V. A., Prudnikova, E. V., Kulachkova, S. A., Gorlenko, M. V., Uchanov, P. V., Sushko, S. V., & Ananyeva, N. D. (2021). Microbiological indicators of heavy metals and carbon-containing preparations applied to agrosoddy-podzolic soils differing in humus content. Eurasian Soil Science, 54(3), 448–458. https://doi.org/10.1134/S1064229321030157.

    Article  CAS  Google Scholar 

  • Torres-Cruz, T. J., Hesse, C., Kuske, C. R., & Porras-Alfaro, A. (2018). Presence and distribution of heavy metal tolerant fungi in surface soils of a temperate pine forest. Applied Soil Ecology, 131, 66–74. https://doi.org/10.1016/j.apsoil.2018.08.001.

    Article  Google Scholar 

  • Van der Perk, M. (2013). Soil and water contamination. CRC Press.

    Google Scholar 

  • Verkhovtseva, N. V., Osipov, G. A., Bolysheva, T. N., Kasatikov, V. A., Kuzmina, N. V., Antsiferova, EJu., & Alexeeva, A. S. (2002). Comparative investigation of vermicompost microbial communities. In H. Insam, N. Riddech, & S. Klammer (Eds.), Microbiology of composting (pp. 99–110). Springer Verlag.

    Chapter  Google Scholar 

  • Veum, K. S., Goyne, K. W., Kremer, R. J., Miles, R. J., & Sudduth, K. A. (2014). Biological indicators of soil quality and soil organic matter characteristics in an agricultural management continuum. Biogeochemistry, 117, 81–99. https://doi.org/10.1007/s10533-013-9868-7.

    Article  CAS  Google Scholar 

  • White, D. C. (1988). Validation of quantitative analysis for microbial biomass, community structure, and metabolic activity. Advances in Limnology, 31, 1–18.

  • White, D. C., Ringelberg, D. B. (1998). Signature biolipid biomarker analysis In: R. S. Burlage et al. (eds): Techniques in microbial ecology (pp 255–272). Oxford Univ Press.

  • Wilkinson, K. G., Dixon, K. W., & Sivasithamparam, K. (1989). Interaction of soil bacteria, mycorrhizal fungi and orchid seeds in relation to germination of Australian orchids. New Phytologist, 112, 429–435. https://doi.org/10.1111/j.1469-8137.1989.tb00334.x.

    Article  Google Scholar 

  • Winding, A., Hund-Rinke, K., & Rutgers, M. (2005). The use of microorganisms in ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety, 62, 230–248. https://doi.org/10.1016/j.ecoenv.2005.03.026.

    Article  CAS  Google Scholar 

  • World Reference Base for Soil Resources. (2014). International soil classification system for naming soils and creating legends for soil maps FAO. FAO.

    Google Scholar 

  • Wu, Q. H., Leung, J. Y. S., Geng, X. H., Chen, S. J., et al. (2014). Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: Implications for dissemination of heavy metals. Science of the Total Environment, 506, 217–225. https://doi.org/10.1016/j.scitotenv.2014.10.121.

    Article  CAS  Google Scholar 

  • Zhang, Q., Jin, H., Zhou, H., Cai, M., Li, Y., Zhang, G., et al. (2019). Variation of soil anaerobic microorganisms connected with anammox processes by 13C-phospholipid fatty acid analysis among long-term fertilization regimes in a crop rotation system. Applied Soil Ecology., 133, 34–43. https://doi.org/10.1016/j.apsoil.2018.09.005.

    Article  Google Scholar 

  • Zhang, Y., Cong, J., Lu, H., Yang, C., Yang, Y., et al. (2014). An integrated study to analyze soil microbial community structure and metabolic potential in two forest types. PLoS ONE, 9(4), e93773. https://doi.org/10.1371/journal.pone.0093773.

    Article  CAS  Google Scholar 

  • Zhao, X., Huang, J. L. J., & Sun, Y. (2019). Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine. Ecotoxicology and Environmental Safety, 170, 218–226. https://doi.org/10.1016/j.ecoenv.2018.11.136.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was performed according to the Development Program of the Interdisciplinary Scientific and Educational School of M.V. Lomonosov Moscow State University «The future of the planet and global environmental change». The authors are grateful to Prof. G. Osipov for providing equipment and shooting mass spectrometric spectra.

Author information

Authors and Affiliations

Authors

Contributions

Vera Terekhova: conceptualization, writing—original draft, supervision, funding acquisition, project administration; Elena Fedoseeva: validation, formal analysis, writing—original draft; Anna Barra Caracciolo: writing—review and editing; Anastasiya Kiryushina: investigation, visualization, writing—review and editing; Nadezda Verkhovtseva: methodology, investigation.

Corresponding author

Correspondence to V. A. Terekhova.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terekhova, V.A., Fedoseeva, E.V., Kiryushina, A.P. et al. Effect of an Equal Dose of Polymetallic Pollution on the Microbiological Characteristics of Two Soils with Different Organic Carbon Contents. Water Air Soil Pollut 232, 292 (2021). https://doi.org/10.1007/s11270-021-05174-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05174-4

Keywords

Navigation