Skip to main content
Log in

Internal Gravity Waves from an Oscillating Source in the Ocean

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The problem of the generation of internal gravity waves (IGWs) by a localized source of perturbations is considered. An oscillating source is located in the ocean with arbitrary depth distributions of the buoyancy frequency and background shear current. Integral representations of solutions are obtained under the Miles–Howard stability condition. To solve the spectral problem, a numerical algorithm is proposed for calculating the main dispersion relations, which determine the phase characteristics of the generated waves. For the characteristic distributions of the buoyancy frequency and background shear flows observed in the ocean, the results of numerical calculations of dispersion curves and phase patterns of wave fields are presented. The transformation of the phase patterns of IGW fields is studied numerically for various generation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Yu. Z. Miropol’skii, Dynamics of Internal Gravity Waves in the Ocean (Gidrometeoizdat, Leningrad, 1981) [in Russian].

    Google Scholar 

  2. O. Phillips, The Dynamics of the Upper Ocean (Cambridge University Press, London, 1966; Gidrometeoizdat, Leningrad, 1980).

  3. A. L. Fabrikant and Yu. A. Stepanyants, Wave Propagation in Shear Flows (Nauka-Fizmatlit, Moscow, 1996) [in Russian].

    Google Scholar 

  4. J. Pedlosky, Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics (Springer, Berlin, 2010).

    Google Scholar 

  5. B. R. Sutherland, Internal Gravity Waves (Cambridge University Press, Cambridge, 2010).

    Book  Google Scholar 

  6. V. V. Bulatov and Yu. V. Vladimirov, Waves in Stratified Media (Nauka, Moscow, 2015) [in Russian].

    Google Scholar 

  7. V. Vlasenko, N. Stashchuk, and K. Hutter, Baroclinic Tides (Cambridge University Press, New York, 2005).

    Book  Google Scholar 

  8. E. G. Morozov, Oceanic Internal Tides. Observations, Analysis and Modeling (Springer, Berlin, 2018).

    Book  Google Scholar 

  9. The Ocean in Motion, Ed. by M. G. Velarde, R. Yu. Tarakanov, and A. V. Marchenko (Springer, 2018).

    Google Scholar 

  10. M. J. Lighthill, Waves in Fluids (Cambridge Univ. Press, Cambridge, 1977; Mir, Moscow, 1981).

  11. G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974; Mir, Moscow, 1977).

  12. E. G. Morozov, G. Parrilla-Barrera, M. G. Velarde, and A. D. Scherbinin, “The straits of Gibraltar and Kara Gates: a comparison of internal tides,” Oceanol. Acta 26 (3), 231–241 (2003).

    Article  Google Scholar 

  13. E. G. Morozov, R. Yu. Tarakanov, D. I. Frey, T. A. Demidova, and N. I. Makarenko, “Bottom water flows in the tropical fractures of the Northern Mid-Atlantic Ridge,” J. Oceanogr. 74 (2), 147–167 (2018).

    Article  Google Scholar 

  14. D. I. Frey, A. N. Novigatsky, M. D. Kravchishina, and E. G. Morozov, “Water structure and currents in the Bear Island Trough in July–August 2017,” Russ. J. Earth Sci. 17, ES3003 (2017).

    Article  Google Scholar 

  15. E. E. Khimchenko, D. I. Frey, and E. G. Morozov, “Tidal internal waves in the Bransfield Strait, Antarctica,” Russ. J. Earth. Sci. 20, ES2006 (2020).

    Article  Google Scholar 

  16. J. W. Miles, “On the stability of heterogeneous shear flow,” J. Fluid Mech. 10 (4), 495–509 (1961).

    Article  Google Scholar 

  17. M. Hirota and P. J. Morrison, “Stability boundaries and sufficient stability conditions for stably stratified, monotonic shear flows,” Phys. Lett. A 380 (21), 1856–1860 (2016).

    Article  Google Scholar 

  18. S. Churilov, “On the stability analysis of sharply stratified shear flows,” Ocean Dyn. 68, 867–884 (2018).

    Article  Google Scholar 

  19. J. R. Carpenter, N. J. Balmforth, and G. A. Lawrence, “Identifying unstable modes in stratified shear layers,” Phys. Fluids 22, 054104 (2010).

    Article  Google Scholar 

  20. F. Fraternale, L. Domenicale, G. Staffilan, and D. Tordella, “Internal waves in sheared flows: Lower bound of the vorticity growth and propagation discontinuities in the parameter space,” Phys. Rev. 97 (6), 063102 (2018).

    Google Scholar 

  21. A. A. Gavrileva, Yu. G. Gubarev, and M. P. Lebedev, “The Miles theorem and the first boundary value problem for the Taylor–Goldstein equation,” J. Appl. Ind. Math. 13 (3), 460–471 (2019).

    Article  Google Scholar 

  22. P. I. Bouruet-Aubertot and S. A. Thorpe, “Numerical experiments of internal gravity waves in an accelerating shear flow,” Dyn. Atm. Oceans 29, 41–63 (1999).

    Article  Google Scholar 

  23. V. V. Bulatov and Yu. V. Vladimirov, “Calculation of the eigenfunctions and dispersion curves of the main vertical spectral problem for internal gravity waves,” Mat. Model. 19 (2), 59–68 (2007).

    Google Scholar 

  24. V. A. Borovikov, Uniform Stationary Phase Method. IEE Electromagnetic Waves (Institution of Electrical Engineers, London, 1994).

  25. P. N. Svirkunov and M. V. Kalashnik, “Phase patterns of dispersive waves from moving localized sources,” Phys.-Usp. 57 (1), 80–91 (2014).

    Article  Google Scholar 

  26. D. Broutman and J. Rottman, “A simplified Fourier method for computing the internal wave field generated by an oscillating source in a horizontally moving depth-dependent background,” Phys. Fluids 16, 3682 (2004).

    Article  Google Scholar 

  27. V. Bulatov and Yu. Vladimirov, “Analytical approximations of dispersion relations for internal gravity waves equation with shear flows,” Symmetry 12 (11), 1865 (2020).

    Article  Google Scholar 

  28. V. Bulatov and Yu. Vladimirov, “Internal gravity waves in the ocean with multidirectional shear flows,” Izv., Atmos. Ocean. Phys. 56 (1), 85–91 (2020).

    Article  Google Scholar 

  29. Yu. Kravtsov and Yu. Orlov, Caustics, Catastrophes and Wave Fields (Springer, Berlin, 1999).

    Book  Google Scholar 

  30. V. I. Arnol’d, Wave Fronts and Curve Topology (Fazis, Moscow, 2002) [in Russian].

    Google Scholar 

Download references

Funding

This work was performed on the topics of the State Task nos. АААА-А20-120011690131-7 (V.V. Bulatov and Yu.V. Vladimirov) and 0149-2019-0004, 0128-2021-0002 (I.Yu. Vladimirov), and with partial financial support from the Russian Foundation for Basic Research, project no. 20-01-00111A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Bulatov, Yu. V. Vladimirov or I. Yu. Vladimirov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulatov, V.V., Vladimirov, Y.V. & Vladimirov, I.Y. Internal Gravity Waves from an Oscillating Source in the Ocean. Izv. Atmos. Ocean. Phys. 57, 321–328 (2021). https://doi.org/10.1134/S0001433821030026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821030026

Keywords:

Navigation