Skip to main content
Log in

Multipoint Measurements of Temperature and Wind in the Surface Layer

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The results of multipoint measurements of wind-direction pulsations and air temperature in the surface layer on the basis of the Tsymljansk Scientific Station of the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (RAS), generalized over several years, are considered. The characteristic sizes of vortex and thermal structures, as well as the ratio of these sizes under various conditions, have been determined. The previously found dependence of the characteristic sizes of structures on the conditions of thermal stratification is confirmed. Visualizations of two-dimensional fields of temperature and wind direction are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. L. R. Tsvang, “Atmospheric turbulence studies at the Tsimlyansk scientific station of the Institute of Atmospheric Physics, USSR Academy of Sciences,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 21 (4), 339–348 (1985).

    Google Scholar 

  2. T. Foken, “50 years of the Monin–Obukhov similarity theory,” Boundary Layer Meteorol. 119 (3), 431–447 (2006).

    Article  Google Scholar 

  3. B. M. Koprov, “From the history of boundary-layer studies at the Institute of Atmospheric Physics,” Izv., Atmos. Ocean. Phys. 54 (3), 282–292 (2018).

    Article  Google Scholar 

  4. V. P. Dymnikov, V. N. Lykosov, and E. M. Volodin, “Modeling climate and its changes: Current problems,” Herald Russ. Acad. Sci. 82 (3), 111–119 (2012).

    Article  Google Scholar 

  5. J. Yuval and P. A. O’Gorman, “Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions,” Nat. Commun. 11 (1), 1–10 (2020).

    Article  Google Scholar 

  6. N. V. Vazaeva, O. G. Chkhetiani, M. V. Kurgansky, and M. A. Kallistratova, “Helicity and turbulence in the atmospheric boundary layer,” Izv., Atmos. Ocean. Phys. 57 (1), 29–46 (2021).

    Article  Google Scholar 

  7. E. R. Lotfy, A. A. Abbas, S. A. Zaki, and S. Harun, “Characteristics of turbulent coherent structures in atmospheric flow under different shear-buoyancy conditions,” Boundary Layer Meteorol. 173, 115–141 (2019).

    Article  Google Scholar 

  8. L. Mahrt, “Surface wind direction variability,” J. Appl. Meteorol. Climatol. 5, 144–152 (2011).

    Article  Google Scholar 

  9. M. A. Carper and F. Porté-Agel, “The role of coherent structures in subfilter-scale dissipation of turbulence measured in the atmospheric surface layer,” J. Turbul. 5 (1), 040 (2004).

  10. G. Han, G. Wang, and X. Zheng, “Applicability of Taylor’s hypothesis for estimating the mean streamwise length scale of large-scale structures in the near-neutral atmospheric surface layer,” Boundary Layer Meteorol. 172, 215–237 (2019).

    Article  Google Scholar 

  11. E. A. Shishov, O. A. Solyonaya, and V. M. Koprov, “Investigation into variations of wind directions near the surface authors (first, second and last of 4),” Izv., Atmos. Ocean. Phys. 54 (6), 515–523 (2018).

    Article  Google Scholar 

  12. N. Z. Ariel’, “Some results of observations of temperature wind direction pulsations,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 107, 60–65 (1961).

    Google Scholar 

  13. S. I. Krechmer, “On the issue of wind direction variability,” Tr. Geofiz. Inst., Akad. Nauk SSSR, 33, 48–59 (1956).

    Google Scholar 

  14. E. A. Shishov, B. M. Koprov, and V. M. Koprov, “Statistical parameters of the spatiotemporal variability of the wind direction in the surface layer,” Izv., Atmos. Ocean. Phys. 53 (1), 19–23 (2017).

    Article  Google Scholar 

  15. B. M. Koprov, V. M. Koprov, and T. I. Makarova, “Convective structures in the atmospheric surface layer,” Izv., Atmos. Ocean. Phys. 36 (1), 37–47 (2000).

    Google Scholar 

  16. B. M. Koprov, V. M. Koprov, T. I. Makarova, and G. S. Golitsyn, “Coherent structures in the atmospheric surface layer under stable and unstable conditions,” Boundary Layer Meteorol. 51 (6), 19–32 (2004).

    Article  Google Scholar 

  17. A. S. Monin and A. M. Obukhov, “Dimensionless characteristics of turbulence in the atmospheric surface layer,” Dokl. Akad. Nauk SSSR 93 (2), 223–226 (1953).

    Google Scholar 

  18. M. I. Mordukhovich and L. R. Tsvang, “Direct measurements of turbulent flows at two heights in the atmospheric surface layer,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 2 (8), 786–803 (1966).

    Google Scholar 

  19. I. A. Repina, Methods for Determining Turbulent Flows over Sea Surafce (IKI RAN, Moscow, 2007) [in Russian].

    Google Scholar 

  20. J. C. Wyngaard, Turbulence in the Atmosphere (Cambridge University Press, New York, 2010).

    Book  Google Scholar 

  21. N. Hutchins, K. Chauhan, I. Marusic, J. Monty, and J. Klewicki, “Towards reconciling the layer-scale structure of turbulent boundary layers in the atmosphere and laboratory,” Boundary Layer Meteorol. 145, 273–306 (2012).

    Article  Google Scholar 

  22. S. E. Hommema and R. J. Adrian, “Packet structure of surface eddies in the atmospheric boundary layer,” Boundary Layer Meteorol. 106, 147–170 (2003).

    Article  Google Scholar 

  23. S. P. Oncley, O. Hartogensis, and C. Tong, “Whirlwinds and hairpins in the atmospheric surface layer,” J. Atmos. Sci. 73, 4927–4943 (2016).

    Article  Google Scholar 

  24. E. Doorn, B. Dhruva, K. R. Sreenivasan, and V. Cassella, “Statistics of wind direction and its increments,” Phys. Fluids 12 (6), 1529–1534 (2000).

    Article  Google Scholar 

  25. A. M. Obukhov, Turbulence and Dynamics of the Atmosphere (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  26. B. M. Koprov, V. M. Koprov, M. V. Kurgansky, and O. G. Chkhetiani, “Helicity and potential vorticity in surface turbulence,” Izv., Atmos. Ocean. Phys. 51 (6), 565–575 (2015).

    Article  Google Scholar 

  27. S. Panchev, Random Functions and Turbulence (Gidrometeoizdat, Leningrad, 1967) [in Russian].

    Google Scholar 

  28. S. L. Zubkovskii and M. M. Fedorov, “Experimental determination of spatial correlation functions of the wind velocity field in the atmospheric surface layer,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 22 (9), 909–916 (1986).

    Google Scholar 

  29. B. M. Koprov and D. Yu. Sokolov, “Spatial correlation functions of wind velocity components and temperature in the atmospheric surface layer,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 9 (2), 178–182 (1973).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank A.Yu. Artamonov, D.V. Zaitseva, D.D. Kuznetsov, V.S. Lyulyukin, and I.A. Repina for their attention, assistance, and advice in organizing and conducting experiments, as well as the staff of the Tsimlyansk Scientific Station for assistance and providing the necessary conditions for successful measurements. We would especially like to mention B.M. Koprova, on whose initiative this field of experimental studies into the structure of the atmospheric boundary layer was renewed at a new level.

Funding

This work was supported by the Russian Foundation for Basic Research, grant nos. 18-35-00591 and 17-05-01116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Shishov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishov, E.A., Solenaya, O.A., Chkhetiani, O.G. et al. Multipoint Measurements of Temperature and Wind in the Surface Layer. Izv. Atmos. Ocean. Phys. 57, 254–263 (2021). https://doi.org/10.1134/S0001433821030087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821030087

Keywords:

Navigation