Skip to main content
Log in

The reflection and transmission of a quasi-longitudinal displacement wave at an imperfect interface between two nonlocal orthotropic micropolar half-spaces

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This work is concerned with the reflection and transmission of quasi-longitudinal displacement wave incident at an imperfect interface between two nonlocal orthotropic micropolar half-spaces. The linear spring model is used to describe the imperfection of bonding behavior at the interface. Reflection, transmission coefficients and energy ratios of waves have been derived analytically for when a longitudinal displacement wave strikes for both imperfect and perfect interfaces. Finally, numerical examples are provided to show the effect of the imperfect interface, nonlocal parameter and incident angle on the reflection and transmission coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Achenbach, J.D.: Wave Propagation in Elastic Solids. Series in Applied Mechanics, vol. 16. North Holland, Amsterdam (1973)

    MATH  Google Scholar 

  2. Barak, M.S., Kaliraman, V.: Reflection and transmission of elastic waves from an imperfect boundary between micropolar elastic solid half space and fluid saturated porous solid half space. Mech. Adv. Mater. Struct. 26(14), 1226–1233 (2018)

    Article  Google Scholar 

  3. Chakraborty, A.: Wave propagation in anisotropic media with non-local elasticity. Int. J. Solids Struct. 44, 5723–5741 (2007)

    Article  Google Scholar 

  4. Eringen, A.C.: Plane waves in nonlocal micropolar elasticity. Int. J. Eng. Sci. 22(8–10), 1113–1121 (1984)

    Article  Google Scholar 

  5. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2001)

    MATH  Google Scholar 

  6. Goyal, S., Sahu, S., Mondal, S.: Influence of imperfect bonding on the reflection and transmission of QP-wave at the interface of two functionally graded piezoelectric materials. Wave Motion 92, 102431 (2020)

    Article  MathSciNet  Google Scholar 

  7. Hashin, Z.: The spherical inclusion with imperfect interface. J. Appl. Mech. 58(2), 444–449 (1991)

    Article  Google Scholar 

  8. Huang, W., Rokhlin, S.I.: Interface waves along an anisotropic imperfect interface between anisotropic solids. J. Nondestr. Eval. 11, 185–198 (1992)

    Article  Google Scholar 

  9. Khurana, A., Tomar, S.K.: Reflection of plane longitudinal waves from the stress-free boundary of a nonlocal, micropolar solid half-space. J. Mech. Mater. Struct. 8(1), 95–107 (2013)

    Article  Google Scholar 

  10. Khurana, A., Tomar, S.K.: Waves at interface of dissimilar nonlocal micropolar elastic half-spaces. J. Mech. Adv. Mater. Struct. 26(10), 825–833 (2019)

    Article  Google Scholar 

  11. Kumar, R., Sharma, N., Ram, P.: Interfacial imperfection on reflection and transmission of plane waves in anisotropic micropolar media. Theor. Appl. Fract. Mech. 49, 305–312 (2008)

    Article  Google Scholar 

  12. Kumar, R., Sharma, N., Ram, P.: Reflection and transmission of micropolar elastic waves at imperfect boundary. Multidiscip. Model. Mater. Struct. 4, 15–36 (2008)

    Article  Google Scholar 

  13. Nayfeh, A.H.: Wave Propagation in Layered Anisotropic Media. North-Holland, Amsterdam (1995)

    MATH  Google Scholar 

  14. Pang, Y., Liu, J.X.: Reflection and transmission of plane waves at an imperfectly bonded interface between piezoelectric and piezomagnetic media. Eur. J. Mech. A/Solids 30, 731–740 (2011)

    Article  Google Scholar 

  15. Passarella, F., Tibullo, V., Zampoli, V.: On the strong ellipticity for orthotropic micropolar elastic bodies in a plane strain state. Mech. Res. Commun. 38, 512–517 (2011)

    Article  Google Scholar 

  16. Parfitt, V.R., Eringen, A.C.: Reflection of plane waves from a flat boundary of a micropolar elastic half-space. J. Acoust. Soc. Am. 45, 1258–1272 (1969)

    Article  Google Scholar 

  17. Singh, B.: Wave propagation in an orthotropic micropolar elastic solid. Int. J. Solids Struct. 44, 3638–3645 (2007)

    Article  Google Scholar 

  18. Tomar, S.K., Gogna, M.L.: Reflection and refraction of longitudinal wave at an interface between two micropolar elastic solids in welded contact. J. Acoust. Soc. Am. 97(2), 822–830 (1995)

    Article  Google Scholar 

  19. Tomar, S., Khurana, A.: Rayleigh-type waves in nonlocal micropolar solid half-space. Ultrasonics 73, 162–168 (2016)

    Google Scholar 

  20. Tomar, S., Khurana, A.: Wave propagation in nonlocal microstretch solid. Appl. Math. Model. 40, 5858–5875 (2016)

    Article  MathSciNet  Google Scholar 

  21. Vinh, P.C., Anh, V.T.N., Tung, D.X., Kieu, N.T.: Homogenization of very rough interfaces for the micropolar elasticity theory. Appl. Math. Model. 54, 467–482 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do Xuan Tung.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

The coefficients of characteristic equation

$$\begin{aligned} t_{6}= & {} k^2 (-Q_{22} +\rho c^2 \epsilon ^2 k^2) (-Q_{88} +\rho c^2 \epsilon ^2 k^2) (B_{44} -\rho c^2 \epsilon ^2 j k^2).\\ t_{4}= & {} Q_{22} \bigg ((B_{66} k^2 + \kappa _{12}) Q_{88} - \kappa _{21} (\kappa _{21} + Q_{88})\bigg ) + c^2 k^2 \bigg [\epsilon ^2 \bigg (\kappa _{21}^2 - (B_{66} k^2 + \kappa _{12}) Q_{22}\\&\quad + \kappa _{21} Q_{22}+j k^2 (-Q_{11}Q_{22} + (Q_{12} + Q_{78})^2)\bigg ) - \bigg (j Q_{22}+ \epsilon ^2 \big (\kappa _{12}-\kappa _{21}+ k^2 (B_{66}\\&\quad + j (Q_{22}+Q_{77}))\big )\bigg ) Q_{88}\bigg ] \rho + c^4 \epsilon ^2 k^4 \bigg [B_{66} \epsilon ^2 k^2 + 2 j (Q_{22} + Q_{88}) + \epsilon ^2 \big (\kappa _{12} - \kappa _{21}\\&\quad + j k^2 \big (Q_{11}+2Q_{22}+Q_{77}+2Q_{88}\big )\big )\bigg ] \rho ^2-3 c^6 \epsilon ^4 j k^6 (1+ \epsilon ^2 k^2) \rho ^3+ B_{44} k^2 \bigg (Q_{11} Q_{22}\\&\quad - (Q_{12}+Q_{78})^2 +Q_{77}Q_{88}-c^2 \big (Q_{22}+Q_{88}+\epsilon ^2 k^2 (Q_{11}+Q_{22}+Q_{77}+Q_{88})\big ) \rho \\&\quad +2 c^4 \epsilon ^2 k^2 (1+ \epsilon ^2 k^2) \rho ^2\bigg ).\\ t_{2}= & {} 2\kappa _{12}\kappa _{21}Q_{12}-B_{66}k^2 Q_{12}^2-\kappa _{12}Q_{12}^2+\kappa _{21}Q_{12}^2+B_{66}k^2Q_{11}Q_{22}+\kappa _{12}Q_{11} Q_{22}-\kappa _{21}Q_{11}Q_{22}\\&\quad - \kappa _{21}^2 Q_{77} + B_{44} k^2 Q_{11} Q_{77} + 2 \kappa _{12} \kappa _{21} Q_{78} - 2 B_{66} k^2 Q_{12} Q_{78} - 2\kappa _{12} Q_{12} Q_{78} + 2 \kappa _{21} Q_{12} Q_{78}\\&\quad -B_{66}k^2Q_{78}^2-\kappa _{12}Q_{78}^2+\kappa _{21}Q_{78}^2-\kappa _{12}^2Q_{88}+B_{66}k^2Q_{77}Q_{88}+\kappa _{12}Q_{77}Q_{88}-\kappa _{21} Q_{77}Q_{88}\\&\quad -c^2 \bigg [-\kappa _{21}^2+k^2 (B_{44} Q_{11} - j Q_{12}^2) + (B_{66} k^2 + \kappa _{12}) Q_{22} + k^2 \bigg (B_{44} Q_{77} + j \big (Q_{11} Q_{22}\\&\quad -Q_{78} (2 Q_{12}+Q_{78})\big )\bigg )+\big (\kappa _{12} + k^2 (B_{66}+jQ_{77})\big ) Q_{88}-\kappa _{21} (Q_{22}+Q_{88})\\&\quad +\epsilon ^2 k^2 \bigg (-\kappa _{12}^2 - \kappa _{21}^2 + k^2 \big (B_{44} Q_{11} - j Q_{12}^2+ B_{66} (Q_{11} + Q_{22})\big ) + \kappa _{12} (Q_{11} + Q_{22} + Q_{77}\\&\quad +Q_{88})-\kappa _{21} (Q_{11}+Q_{22}+Q_{77}+Q_{88})+k^2 \big ((B_{44}+B_{66}) Q_{77}+B_{66}Q_{88}+ j (Q_{11} (Q_{22}+ Q_{77})\\&\quad -Q_{78}(2 Q_{12}+Q_{78})+Q_{77}Q_{88})\big )\bigg )\bigg ] \rho + c^4 k^2 (1 + \epsilon ^2 k^2) (B_{44} + B_{44} \epsilon ^2 k^2 + 2 B_{66} \epsilon ^2 k^2 + 2 \epsilon ^2 \kappa _{12}\\&\quad -2 \epsilon ^2 \kappa _{21}+2\epsilon ^2 j k^2 Q_{11}+j Q_{22}+\epsilon ^2 j k^2 Q_{22}+2 \epsilon ^2 j k^2 Q_{77} + j Q_{88}\\&\quad +\epsilon ^2 j k^2 Q_{88}) \rho ^2 - 3 c^6 j k^4 (\epsilon + \epsilon ^3 k^2)^2 \rho ^3.\\ t_{0}= & {} (-Q_{11} +\rho c^2 (1 + \epsilon ^2 k^2)) \bigg (\kappa _{12}^2 - \kappa _{12} Q_{77} +\rho c^2 (1 + \epsilon ^2 k^2) \kappa _{12}\\&\quad + (Q_{77} -\rho c^2 (1 + \epsilon ^2 k^2)) \big (\kappa _{21} + k^2 (-B_{66} +\rho c^2 j (1 + \epsilon ^2 k^2))\big )\bigg ) \end{aligned}$$

The coefficients of equation system for imperfect interface

$$\begin{aligned} \begin{aligned}&I_{1k}=-(Q_{88}^{+}\alpha _{k}\xi _{k}+Q_{78}^{+}\beta _{k}-\kappa _{21}^{+}); I_{2k}=-(Q_{12}^{+}\alpha _{k}+Q_{22}^{+}\beta _{k}\xi _{k}); I_{3k}=-B_{44}^{+}\xi _{k}\\&I_{4k}=\left( Q_{88}^{+}\alpha _{k}\xi _{k}+Q_{78}^{+}\beta _{k}-\kappa _{21}^{+}+\dfrac{k_\mathrm{T}}{k}i\alpha _{k}\right) ;\quad I_{5k}=\left( Q_{12}^{+}\alpha _{k}+Q_{22}^{+}\beta _{k}\xi _{k}+\dfrac{k_\mathrm{N}}{k}i\beta _{k}\right) \\&I_{6k}=\left( B_{44}^{+}\dfrac{k}{k_\mathrm{C}}i\xi _{k}-1\right) \quad {(k=1, 2, 3 )}\\&I_{1k}=(Q_{88}^{-}\alpha _{k}\xi _{k}+Q_{78}^{-}\beta _{k}-\kappa _{21}^{-}); I_{2k}=(Q_{12}^{-}\alpha _{k}+Q_{22}^{-}\beta _{k}\xi _{k}); I_{3k}=B_{44}^{-}\xi _{k}\\&I_{4k}=-\dfrac{k_\mathrm{T}}{k}i\alpha _{k}; I_{5k}=-\dfrac{k_\mathrm{N}}{k}i\beta _{k}; I_{6k}=1\quad {(k=4, 5, 6 )}\\&I_{10}=(Q_{88}^{+}\alpha _{0}\xi _{0}+Q_{78}^{+}\beta _{0}-\kappa _{21}^{+}); I_{20}=(Q_{12}^{+}\alpha _{0}+Q_{22}^{+}\beta _{0}\xi _{0}); I_{30}=-B_{44}^{+}\xi _{0}\\&I_{40}=-\left( Q_{88}^{+}\alpha _{0}\xi _{0}+Q_{78}^{+}\beta _{0}-\kappa _{21}^{+}+\dfrac{k_\mathrm{T}}{k}i\alpha _{0}\right) ; I_{50}=-\left( Q_{12}^{+}\alpha _{0}+Q_{22}^{+}\beta _{0}\xi _{0}+\dfrac{k_\mathrm{N}}{k}i\beta _{0}\right) \\&I_{60}=-\left( B_{44}^{+}\dfrac{k}{k_\mathrm{C}}i\xi _{1}-1\right) \\ \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tung, D.X. The reflection and transmission of a quasi-longitudinal displacement wave at an imperfect interface between two nonlocal orthotropic micropolar half-spaces. Arch Appl Mech 91, 4313–4328 (2021). https://doi.org/10.1007/s00419-021-02011-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02011-2

Keywords

Navigation