Skip to main content
Log in

Simulation of fully nonlinear water wave propagation over the flat bottom and uneven bottom by meshless numerical wave tank

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A numerical wave tank (NWT) is developed by employing the local radial point interpolation collocation method, mixed Eulerian–Lagrangian approach, and the fourth-order Runge–Kutta method. The potential theory is used for a mathematical explanation of the wave-propagation problem. The Laplace equation in the Eulerian manner and the free surface conditions in the Lagrangian manner are used to simulate the fully nonlinear water waves. The incident waves are generated by imposing analytic forms of the potential on the upstream boundary. To avoid any reflection of the waves at the end of the tank, a damping zone is placed on the free surface before the downstream wall boundary. In order to demonstrate the efficiency and accuracy of the meshless NWT, the first-, second-, third-, and fifth-order Stokes waves are simulated and the numerical results are compared with the analytical solutions. In addition, the wave propagation of water waves in uneven bottom NWT is investigated. Fairly good agreements between the numerical results, the analytical solutions, and experimental data are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bojanowski, C.: Numerical modeling of large deformations in soil structure interaction problems using FE, EFG, SPH, and MM-ALE formulations. Arch. Appl. Mech. (2014). https://doi.org/10.1007/s00419-014-0830-5

    Article  MATH  Google Scholar 

  2. Murčinková, Z., Novák, P., Kompiš, V., Žmindák, M.: Homogenization of the finite-length fibre composite materials by boundary meshless type method. Arch. Appl. Mech. (2018). https://doi.org/10.1007/s00419-018-1342-5

    Article  Google Scholar 

  3. Cui, X., Liu, G., Li, G.: A smoothed Hermite radial point interpolation method for thin plate analysis. Arch. Appl. Mech. (2011). https://doi.org/10.1007/s00419-009-0392-0

    Article  MATH  Google Scholar 

  4. Monaghan, J.J.: Simulating free surface flows with SPH. J. Comput. Phys. (1994). https://doi.org/10.1006/jcph.1994.1034

    Article  MATH  Google Scholar 

  5. Wen, H., Ren, B., Dong, P., Wang, Y.: A SPH numerical wave basin for modeling wave-structure interactions. Appl. Ocean Res. 56, 366–377 (2016)

    Article  Google Scholar 

  6. Altomare, C., Tagliafierro, B., Dominguez, J.M., Suzuki, T., Viccione, G.: Improved relaxation zone method in SPH-based model for coastal engineering applications. Appl. Ocean Res. (2018). https://doi.org/10.1016/j.apor.2016.06.012

    Article  Google Scholar 

  7. Ramli, M.Z., Temarel, P., Tan, M.: Hydrodynamic coefficients for a 3-D uniform flexible barge using weakly compressible smoothed particle hydrodynamics. J. Mar. Sci. Appl. (2018). https://doi.org/10.1007/s11804-018-0044-2

    Article  Google Scholar 

  8. Wu, N.-J., Tsay, T.-K., Young, D.L.: Meshless numerical simulation for fully nonlinear water waves. Int. J. Numer. Meth. Fluids (2006). https://doi.org/10.1002/fld.1051

    Article  MATH  Google Scholar 

  9. Wu, N.-J., Tsay, T.-K.: Applicability of the method of fundamental solutions to 3-D wave–body interaction with fully nonlinear free surface. J. Eng. Math. (2008). https://doi.org/10.1007/s10665-008-9250-2

    Article  Google Scholar 

  10. Xiao, L.-F., Yang, J.-M., Peng, T., Li, J.: A meshless numerical wave tank for simulation of nonlinear irregular waves in shallow water. Int. J. Numer. Meth. Fluids (2009). https://doi.org/10.1002/fld.1954

    Article  MathSciNet  MATH  Google Scholar 

  11. Xiao, L., Yang, J., Peng, T., Tao, L.: A free surface interpolation approach for rapid simulation of short waves in meshless numerical wave tank based on the radial basis function. J. Comput. Phys. (2016). https://doi.org/10.1016/j.jcp.2015.12.003

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, T., Ren, Y.-F., Yang, Z.-Q., Fan, C.-M., Li, P.-W.: Application of generalized finite difference method to propagation of nonlinear water waves in numerical wave flume. Ocean Eng. (2016). https://doi.org/10.1016/j.oceaneng.2016.07.038

    Article  Google Scholar 

  13. Fan, C.-M., Chu, C.-N., Šarler, B., Li, T.-H.: Numerical solutions of waves-current interactions by generalized finite difference method. Eng. Anal. Boundary Elem. (2018). https://doi.org/10.1016/j.enganabound.2018.01.010

    Article  MATH  Google Scholar 

  14. Senturk, U.: Modeling nonlinear waves in a numerical wave tank with localized meshless RBF method. Comput. Fluids (2011). https://doi.org/10.1016/j.enganabound.2018.01.010

    Article  MathSciNet  MATH  Google Scholar 

  15. Gholamipoor, M., Ghiasi, M.: A meshless numerical wave tank for simulation of fully nonlinear wave–wave and wave–current interactions. J. Eng. Math. (2019). https://doi.org/10.1007/s10665-019-10021-x

    Article  MathSciNet  MATH  Google Scholar 

  16. Gobbi, M.F., Kirby, J.T.: Wave evolution over submerged sills: tests of a high-order Boussinesq model. Coast. Eng. (1999). https://doi.org/10.1016/S0378-3839(99)00015-0

    Article  Google Scholar 

  17. Bayona, V., Moscoso, M., Kindelan, M.: Optimal variable shape parameter for multiquadric based RBF-FD method. J. Comput. Phys. (2012). https://doi.org/10.1016/j.jcp.2011.11.036

    Article  MathSciNet  MATH  Google Scholar 

  18. Sarra, S.A., Sturgill, D.: A random variable shape parameter strategy for radial basis function approximation methods. Eng. Anal. Boundary Elem. (2009). https://doi.org/10.1016/j.enganabound.2009.07.003

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, G.R., Zhang, G.Y., Gu, Y.T., Wang, Y.Y.: A meshfree radial point interpolation method (RPIM) for three-dimensional solids. Comput. Mech. (2005). https://doi.org/10.1007/s00466-005-0657-6

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, X., Liu, G.R., Tai, K., Lam, K.Y.: Radial point interpolation collocation method (RPICM) for partial differential equations. Comput. Math. Appl. (2005). https://doi.org/10.1016/j.camwa.2005.02.019

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, G.-R., Gu, Y.-T.: An Introduction to Meshfree Methods and Their Programming. Springer Science & Business Media (2005). https://doi.org/10.1007/1-4020-3468-7

    Article  Google Scholar 

  22. Ma, R., Li, G.: Spectral analysis of Stokes waves. Ocean Eng. (2002). https://doi.org/10.1016/s0029-8018(01)00034-8

    Article  Google Scholar 

  23. Mueller, A.: Novel two-way artificial boundary condition for 2D vertical water wave propagation modelled with radial-basis-function collocation method. J. Comput. Phys. (2018). https://doi.org/10.1016/s0029-8018(01)00034-8

    Article  MathSciNet  MATH  Google Scholar 

  24. Luth, H.R., Klopman, G., Kitou, N.: Kinematics of waves breaking partially on an offshore bar; LDV measurements of waves with and without a net onshore current. Technical Report H-1573, Delft Hydraulics, Delft vol 40 (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Ghiasi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholamipoor, M., Ghiasi, M. Simulation of fully nonlinear water wave propagation over the flat bottom and uneven bottom by meshless numerical wave tank. Arch Appl Mech 91, 4329–4341 (2021). https://doi.org/10.1007/s00419-021-02010-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02010-3

Keywords

Navigation