Skip to main content
Log in

Design of series tuned mass dampers for seismic control of structures using simulated annealing algorithm

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The effectiveness of the series tuned mass dampers (STMDs) in reducing the dynamic vibrations of the structures under the ground motion is investigated, and their optimum parameters are obtained based on the simulated annealing (SA) optimization. The STMD is one of the most well-known passive control devices which consists of two TMD units arranged in series. However, only a few studies are available on the control performance and optimum parameters of the STMDs for structural systems subjected to ground motion. Thus, the goal of this study is to carry out a thorough optimization analysis based on the SA algorithm for the structures equipped with an STMD under the effect of ground motion. The objective function is selected as the reduction of the displacement response of the structure. It is proved that the optimum STMD has better effectiveness than the optimum TMD in suppressing the maximum story displacement of the structure. Further, the effect of the frequency shift on the effectiveness of the optimally designed STMD is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Den Hartog, J.P.: Mechanical Vibrations. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  2. Warburton, G.B.: Optimum absorber parameters for various combinations of response and excitation parameters. Earthq. Eng. Struct. Dyn. 10(3), 381–401 (1982)

    Article  Google Scholar 

  3. Fujino, Y., Abe, M.: Design formulas for tuned mass dampers based on a perturbation technique. Earth. Eng. Struct. Dyn. 22(10), 833–854 (1993)

    Article  Google Scholar 

  4. Tsai, H.C.: The effect of tuned-mass dampers on the seismic response of base-isolated structures. Int. J. Solids Struct. 32(8–9), 1195–1210 (1995)

    Article  Google Scholar 

  5. Jangid, R.S.: Optimum multiple tuned mass dampers for base-excited undamped system. Earthq. Eng. Struct. Dyn. 28(9), 1041–1049 (1999)

    Article  Google Scholar 

  6. Bakre, S.V., Jangid, R.S.: Optimum multiple tuned mass dampers for base-excited damped main system. Int. J. Struct. Stab. Dyn. 4(4), 527–542 (2004)

    Article  Google Scholar 

  7. Marano, G.C., Greco, R., Trentadue, F., Chiaia, B.: Constrained reliability-based optimization of linear tuned mass dampers for seismic control. Int. J. Solids Struct. 44(22–23), 7370–7388 (2007)

    Article  Google Scholar 

  8. Marano, G.C., Greco, R.: Optimization criteria for tuned mass dampers for structural vibration control under stochastic excitation. J. Vib. Control 17(5), 679–688 (2011)

    Article  MathSciNet  Google Scholar 

  9. Noori, B.: Farshidianfar, A: Optimum design of dynamic vibration absorbers for a beam, based on H and H2 optimization. Arch. Appl. Mech. 83, 1773–1787 (2013)

    Article  Google Scholar 

  10. Nigdeli, S.M., Bekdas, G.: Optimum tuned mass damper approach for adjacent structures. Earthquak. Struct. 7(6), 1071–1091 (2014)

    Article  Google Scholar 

  11. Matta, E.: Seismic effectiveness of tuned mass dampers in a life-cycle cost perspective. Earthquak. Struct. 9(1), 73–91 (2015)

    Article  Google Scholar 

  12. Yazdi, H.A., Saberi, H.: Hatemi, F: Designing optimal tuned mass dampers using improved harmony search algorithm. Adv. Struct. Eng. 19(10), 1620–1636 (2016)

    Article  Google Scholar 

  13. Araz, O., Kahya, V.: Effects of manufacturing type on control performance of multiple tuned mass dampers under harmonic excitation. J. Struct. Eng. Appl. Mech. 1(3), 117–127 (2018)

    Article  Google Scholar 

  14. Yucel, M., Bekdaş, G., Nigdeli, S.M., Sevgen, S.: Estimation of optimum tuned mass damper parameters via machine learning. J. Build. Eng. 26, 100847 (2019)

  15. Ari, M., Faal, R.T.: Passive vibration suppression of plate using multiple optimal dynamic vibration absorbers. Arch. Appl. Mech. 90, 235–274 (2020)

    Article  Google Scholar 

  16. Araz, O.: Effect of detuning conditions on the performance of non-traditional tuned mass dampers under external excitation. Arch. Appl. Mech. 90, 523–532 (2020)

    Article  Google Scholar 

  17. Martins, L.A., Lara-Molina, F.A., Koroishi, E.H., Cavalini, A.A.: Optimal design of a dynamic vibration absorber with uncertainties. J. Vib. Eng. Technol. 8(1), 133–140 (2020)

    Article  Google Scholar 

  18. Sadek, F., Mohraz, B., Taylor, A.W., Chung, R.M.: A method of estimating the parameters of tuned mass dampers for seismic application. Earthquake Eng. Struct. Dyn. 26(6), 617–635 (1997)

    Article  Google Scholar 

  19. Fu, T.S., Johnson, E.A.: Distributed mass damper system for integrating structural and environmental controls in buildings. J. Eng. Mech. 137(3), 205–213 (2011)

    Article  Google Scholar 

  20. Mohebbi, M., Shakeri, K., Ghanbarpour, Y., Majzoub, H.: Designing optimal multiple tuned mass dampers using genetic algorithms (GAs) for mitigating the seismic response of structures. J. Vib. Control 19, 605–625 (2013)

    Article  Google Scholar 

  21. Cetin, H., Aydin, E.: A new tuned mass damper design method based on transfer functions. KSCE J. Civ. Eng. 23, 4463–4480 (2019)

    Article  Google Scholar 

  22. Li, C., Zhu, B.: Estimating double tuned mass dampers for structures under ground acceleration using a novel optimum criterion. J. Sound Vib. 298, 280–297 (2006)

    Article  Google Scholar 

  23. Xu, K., Igusa, T.: Dynamic characteristics of multiple substructures with closely spaced frequencies. Earth. Eng. Struct. Dyn. 21(12), 1059–1070 (1992)

    Article  Google Scholar 

  24. Zuo, L.: Effective and robust vibration control using series multiple tuned-mass dampers. J. Vib. Acoust. 131(3), 031003 (2009)

    Article  Google Scholar 

  25. Asami, T.: Optimal design of double-mass dynamic vibration absorbers arranged in series or in parallel. J. Vib. Acoust. 139(1), 011015 (2017)

    Article  Google Scholar 

  26. Asami, T., Mizukawa, Y., Ise, T.: Optimal design of double-mass dynamic vibration absorbers minimizing the mobility transfer function. J. Vib. Acoust. 140(6), 061012 (2018)

    Article  Google Scholar 

  27. Barredo, E., Mendoza Larios, J.G., Mayen, J., Flores-Hernandez, A.A., Colin, J., Arias Montiel, M.: Optimal design for high-performance passive dynamic vibration absorbers under random vibration. Eng. Struct. 195, 469–489 (2019)

    Article  Google Scholar 

  28. Kahya, V., Araz, O.: Series tuned mass dampers in train-induced vibration control of railway bridges. Struct. Eng. Mech. 61(4), 453–461 (2017)

    Article  Google Scholar 

  29. Araz, O., Kahya, V.: Series tuned mass dampers in control of continuous railway bridges. Struct. Eng. Mech. 73(2), 133–141 (2020)

    Google Scholar 

  30. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  31. Rao, S.S.: Engineering Optimization: Theory and Practice. John Wiley & Sons, New Jersey (2009)

    Book  Google Scholar 

  32. Levin, R.I., Lieven, N.A.J.: Dynamic finite element model updating using simulated annealing and genetic algorithms. Mech. Syst. Signal Process 12(1), 91–120 (1998)

    Article  Google Scholar 

  33. Kim, J., Lee, S.: A simulated annealing algorithm for the creation of synthetic population in activity-based travel demand model. KSCE J. Civ. Eng. 20(6), 2513–2523 (2016)

    Article  Google Scholar 

  34. Reguera, F., Hugo Cortinez, V.: Optimal design of composite thin-walled beams using simulated annealing. Thin Wall. Struct. 104, 71–81 (2016)

    Article  Google Scholar 

  35. Hackl, J., Adey, B.T., Lethanh, N.: Determination of near-optimal restoration programs for transportation networks following natural hazard events using simulated annealing. Comput. Aided Civ. Infrastruct. Eng. 33(8), 618–637 (2018)

    Article  Google Scholar 

  36. Tejani, G.G., Savsani, V.J., Bureerat, S., Patel, V.K., Savsani, P.: Topology optimization of truss subjected to static and dynamic constraints by integrating simulated annealing into passing vehicle search algorithms. Eng. Comput. 35(2), 499–517 (2019)

    Article  Google Scholar 

  37. Leung, A.Y.T., Zhang, H., Cheng, C.C., Lee, Y.Y.: Particle swarm optimization of TMD by non-stationary base excitation during earthquake. Earthquake Eng. Struct. Dyn. 37, 1223–1246 (2008)

    Article  Google Scholar 

  38. Hadi, M.N.S., Arfiadi, Y.: Optimum design of absorber for MDOF structures. J. Struct. Eng. 124, 1272–1280 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onur Araz.

Ethics declarations

Conflict of interest

The author declares no potential conflicts of interest and also received no financial support for the research, authorship and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araz, O., Kahya, V. Design of series tuned mass dampers for seismic control of structures using simulated annealing algorithm. Arch Appl Mech 91, 4343–4359 (2021). https://doi.org/10.1007/s00419-021-02013-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02013-0

Keywords

Navigation