Skip to main content
Log in

Increasing the Operational Efficiency of Insulation Liners in the Air Passage of Blast-Furnace Tuyeres

  • Published:
Metallurgist Aims and scope

It is shown experimentally and computationally that the elongation of the insulation liner in the air passage to the tuyere nose reduces substantially the heat losses with cooling water. To improve its efficiency, it is reasonable to make the liner thickness uniformly decrease from the flange to the nose and to apply slurry coating to the inner surface of the liner. Improving the liner design allowed reducing the heat losses by 26.2% compared with commercial liner and increasing its life by a factor of 1.9 compared with the elongated liner with constant thickness in the inner shell and variable thickness in the nose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. A. V. Borodulin, A. P. Vasil’ev, E. L. Glushchenko, et al., “The information content of the heat losses in the hearth of blast furnaces,” in: Proc. 2nd Int. Sci.-Pract. Conf. on Automated Furnace Units and Energy-Saving Technologies in Metallurgy [in Russian], Izd. MISiS, Moscow (2002), pp. 424–426.

  2. A. A. Bondarenko, A. S. Gorbik, and G. G. Dyshlevich, “Study of thermal stress in various sections of tuyeres,” Stal’, No. 7, 11–12 (1983).

  3. A. Kikuo, A Tuyere for Blast Furnace [Russian translation], Patent No. 2779514 B2 2240207 A JP, C21B7/16, appl. Mar. 13, 1989; publ. Mar. 2001; Byull. No. 47.

  4. E. N. Vinogradov, A. G. Radyuk, E. A. Volkov, A. L. Terebov, and T. Y. Sidorova, “Reducing heat losses through blast furnace tuyeres,” Steel in Transl., 49, No. 11, 778–782 (2019); https://doi.org/10.3103/S0967091219110160.

    Article  Google Scholar 

  5. A. G. Radyuk, A. E. Titlyanov, and T. Y. Sidorova, “Effect of slurry coating on the resistance of thermal insulation insert in blast furnace air tuyere,” Metallurgist, 63, No. 11–12, 1153–1159 (2020); https://doi.org/10.1007/s11015-020-00935-8.

  6. A. G. Radyuk, A. E. Titlyanov, and T. Y. Sidorova, “Thermal state of air tuyeres in blast furnaces,” Steel in Transl., 46, No. 9, 624–628 (2016); https://doi.org/10.3103/S0967091216090084.

    Article  Google Scholar 

  7. A. G. Radyuk, A. E. Titlyanov, and M. M. Skripalenko, “Modeling of the temperature field of blast furnace tuyeres using Deform-2D software,” Metallurgist, 60, No. 9–10, 1011–1015 (2017); https://doi.org/10.1007/s11015-017-0400-5.

  8. Y. S. Tarasov, M. M. Skripalenko, A. G. Radyuk, and A. E. Titlyanov, “Computer simulation of thermal and stress–strain state of blast furnace tuyeres,” Metallurgist, 62, No. 11–12, 1083–1091 (2019); DOI: https://doi.org/10.1007/s11015-019-00760-8.

  9. A. G. Radyuk, S. M. Gorbatyuk, Y. S. Tarasov, A. E. Titlyanov, and A. V. Aleksakhin, “Improvements to mixing of natural gas and hot-air blast in the air tuyeres of blast furnaces with thermal insulation of the blast duct,” Metallurgist, 63, No. 5-6, 433–440 (2019); https://doi.org/10.1007/s11015-019-00843-6.

  10. S. M. Gorbatyuk, Y. S. Tarasov, I. A. Levitskii, A. G Radyuk, and A. E. Titlyanov, “Effect of a ceramic insert with swirler on gas dynamics and heat exchange in a blast furnace tuyere,” Izvest. Ferr. Metall., 62, No. 5, 337–344 (2019); https://doi.org/10.17073/0368-0797-2019-5-337-344.

  11. Y. S. Tarasov, A. G. Radyuk, and S. M. Gorbatyuk, “Effect of the thermal insulation of the inner wall on the thermal condition of the air tuyeres of blast furnaces,” Metallurgist, 61, No. 9-10, 745–750 (2018); https://doi.org/10.1007/s11015-018-0558-5.

  12. Y. Tarasov, A. Radyuk, and S. Gorbatyuk, “Simulation of heat losses and temperature of blast furnaces tuyeres,” MATEC Web of Conf., 129, No. 06031 (2017); https://doi.org/10.1051/matecconf/201712906031.

  13. Y. Tarasov, A. Radyuk, and S. Gorbatyuk, “Research of heat stresses in components of blast furnace tuyere,” MATEC Web of Conf., 224, No. 02029 (2018); https://doi.org/10.1051/matecconf/201822402029.

  14. A. G. Radyuk, A. E. Titlyanov, Y. S. Tarasov, and T. Y. Sidorova, “Decreasing the heat losses at the air tuyeres in blast furnaces,” Steel in Transl., 49, No. 4, 257–260 (2019); https://doi.org/10.3103/S0967091219040119.

    Article  Google Scholar 

  15. M. M. Skripalenko, V. E. Bazhenov, B. A. Romantsev, M. N. Skripalenko, A. V. Koltygin, and А. А. Sidorov, “Computer modeling of chain processes in the manufacture of metallurgical products,” Metallurgist, 58, No. 1-2, 86–90 (2014).

  16. M. N. Skripalenko, M. M. Skripalenko, D. A. Ashikhmin, A. A. Sidorov, and Xu. Yang, “Wavelet analysis of fluctuations in the thickness of cold-rolled strip,” Metallurgist, 57, No. 7-8, 606–611 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Volkov.

Additional information

Translated from Metallurg, Vol. 65, No. 4, pp. 5–8, April, 2021. Russian DOI: 10.52351/00260827_202_04_5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, E.A., Radyuk, A.G., Terebov, A.L. et al. Increasing the Operational Efficiency of Insulation Liners in the Air Passage of Blast-Furnace Tuyeres. Metallurgist 65, 363–367 (2021). https://doi.org/10.1007/s11015-021-01165-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-021-01165-2

Keywords

Navigation