Skip to main content
Log in

Maximum relative entropy of coherence for quantum channels

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Based on the resource theory for quantifying the coherence of quantum channels, we introduce a new coherence quantifier for quantum channels via maximum relative entropy. We prove that the maximum relative entropy for coherence of quantum channels is directly related to the maximally coherent channels under a particular class of superoperations, which results in an operational interpretation of the maximum relative entropy for coherence of quantum channels. We also introduce the conception of sub-superchannels and sub-superchannel discrimination. For any quantum channels, we show that the advantage of quantum channels in sub-superchannel discrimination can be exactly characterized by the maximum relative entropy of coherence for quantum channels. Similar to the maximum relative entropy of coherence for channels, the robustness of coherence for quantum channels has also been investigated. We show that the maximum relative entropy of coherence for channels provides new operational interpretations of robustness of coherence for quantum channels and illustrates the equivalence of the dephasing-covariant superchannels, incoherent superchannels, and strictly incoherent superchannels in these two operational tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev. Lett. 113, 140401 (2014), arXiv: 1311.0275.

    Article  ADS  Google Scholar 

  2. D. Girolami, Phys. Rev. Lett. 113, 170401 (2014), arXiv: 1403.2446.

    Article  ADS  Google Scholar 

  3. A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, Phys. Rev. Lett. 115, 020403 (2015), arXiv: 1502.05876.

    Article  ADS  MathSciNet  Google Scholar 

  4. M. L. Hu, X. Hu, J. Wang, Y. Peng, Y. R. Zhang, and H. Fan, Phys. Rep. 762-764, 1 (2018), arXiv: 1703.01852.

    ADS  Google Scholar 

  5. B. Yadin, J. Ma, D. Girolami, M. Gu, and V. Vedral, Phys. Rev. X 6, 041028 (2016), arXiv: 1512.02085.

    Google Scholar 

  6. A. Winter, and D. Yang, Phys. Rev. Lett. 116, 120404 (2016), arXiv: 1506.07975.

    Article  ADS  Google Scholar 

  7. A. Streltsov, G. Adesso, and M. B. Plenio, Rev. Mod. Phys. 89, 041003 (2017), arXiv: 1609.02439.

    Article  ADS  Google Scholar 

  8. N. Killoran, F. E. S. Steinhoff, and M. B. Plenio, Phys. Rev. Lett. 116, 080402 (2016), arXiv: 1505.07393.

    Article  ADS  Google Scholar 

  9. E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, Phys. Rev. Lett. 116, 070402 (2016), arXiv: 1507.08171.

    Article  ADS  Google Scholar 

  10. E. Chitambar, and G. Gour, Phys. Rev. Lett. 117, 030401 (2016).

    Article  ADS  Google Scholar 

  11. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009), arXiv: quant-ph/0702225.

    Article  ADS  Google Scholar 

  12. I. Marvian, and R. W. Spekkens, New J. Phys. 15, 033001 (2013), arXiv: 1104.0018.

    Article  ADS  Google Scholar 

  13. I. Marvian, and R. W. Spekkens, Nat. Commun. 5, 3821 (2014), arXiv: 1404.3236.

    Article  ADS  Google Scholar 

  14. I. Marvian, and R. W. Spekkens, Phys. Rev. A 90, 062110 (2014), arXiv: 1312.0680.

    Article  ADS  Google Scholar 

  15. G. Gour, and R. W. Spekkens, New J. Phys. 10, 033023 (2008), arXiv: 0711.0043.

    Article  ADS  Google Scholar 

  16. M. Horodecki, K. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen(De), and U. Sen, Phys. Rev. Lett. 90, 100402 (2003), arXiv: quant-ph/0207168.

    Article  ADS  MathSciNet  Google Scholar 

  17. G. Gour, M. P. Müller, V. Narasimhachar, R. W. Spekkens, and N. Yunger Halpern, Phys. Rep. 583, 1 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  18. V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photon. 5, 222 (2011), arXiv: 1102.2318.

    Article  ADS  Google Scholar 

  19. L. Gyongyosi, Quantum Eng. 2, 30 (2020).

    Article  Google Scholar 

  20. J. Aberg, Phys. Rev. Lett. 113, 150402 (2014), arXiv: 1304.1060.

    Article  ADS  Google Scholar 

  21. V. Narasimhachar, and G. Gour, Nat. Commun. 6, 7689 (2015), arXiv: 1409.7740.

    Article  ADS  Google Scholar 

  22. P. CwikMski, M. Studzinski, M. Horodecki, and J. Oppenheim, Phys. Rev. Lett. 115, 210403 (2015).

    Article  ADS  Google Scholar 

  23. M. Lostaglio, D. Jennings, and T. Rudolph, Nat. Commun. 6, 6383 (2015), arXiv: 1405.2188.

    Article  ADS  Google Scholar 

  24. M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, Phys. Rev. X 5, 021001 (2015), arXiv: 1410.4572.

    Google Scholar 

  25. M. B. Plenio, and S. F. Huelga, New J. Phys. 10, 113019 (2008), arXiv: 0807.4902.

    Article  ADS  Google Scholar 

  26. P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, J. Phys. Chem. B 113, 9942 (2009).

    Article  Google Scholar 

  27. S. Lloyd, J. Phys.-Conf. Ser. 302, 012037 (2011).

    Article  Google Scholar 

  28. C. M. Li, N. Lambert, Y. N. Chen, G. Y. Chen, and F. Nori, Sci. Rep. 2, 885 (2012), arXiv: 1212.0194.

    Article  Google Scholar 

  29. S. F. Huelga, and M. B. Plenio, Contemp. Phys. 54, 181 (2013), arXiv: 1307.3530.

    Article  ADS  Google Scholar 

  30. F. Levi, and F. Mintert, New J. Phys. 16, 033007 (2014), arXiv: 1310.6962.

    Article  ADS  Google Scholar 

  31. L. H. Shao, Z. Xi, H. Fan, and Y. Li, Phys. Rev. A 91, 042120 (2015), arXiv: 1410.8327.

    Article  ADS  Google Scholar 

  32. C. Napoli, T. R. Bromley, M. Cianciaruso, M. Piani, N. Johnston, and G. Adesso, Phys. Rev. Lett. 116, 150502 (2016), arXiv: 1601.03781.

    Article  ADS  Google Scholar 

  33. T. Ma, M. J. Zhao, H. J. Zhang, S. M. Fei, and G. L. Long, Phys. Rev. A 95, 042328 (2017), arXiv: 1704.07958.

    Article  ADS  Google Scholar 

  34. L. Lami, B. Regula, and G. Adesso, Phys. Rev. Lett. 122, 150402 (2019), arXiv: 1809.06880.

    Article  ADS  Google Scholar 

  35. D. J. Zhang, C. L. Liu, X. D. Yu, and D. M. Tong, Phys. Rev. Lett. 120, 170501 (2018), arXiv: 1707.02966.

    Article  ADS  Google Scholar 

  36. C. Radhakrishnan, I. Ermakov, and T. Byrnes, Phys. Rev. A 96, 012341 (2017), arXiv: 1707.03545.

    Article  ADS  Google Scholar 

  37. C. Carmeli, T. Heinosaari, S. Maniscalco, J. Schultz, and A. Toigo, New J. Phys. 20, 063038 (2018), arXiv: 1708.05597.

    Article  ADS  Google Scholar 

  38. K. Bu, U. Singh, S. M. Fei, A. K. Pati, and J. Wu, Phys. Rev. Lett. 119, 150405 (2017), arXiv: 1707.08795.

    Article  ADS  MathSciNet  Google Scholar 

  39. X. Hu, Phys. Rev. A 94, 012326 (2016).

    Article  ADS  Google Scholar 

  40. K. Ben Dana, M. García Díaz, M. Mejatty, and A. Winter, Phys. Rev. A 95, 062327 (2017), arXiv: 1704.03710.

    Article  ADS  Google Scholar 

  41. K. Bu, A. Kumar, L. Zhang, and J. Wu, Phys. Lett. A 381, 1670 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  42. K. Korzekwa, S. Czachorski, Z. Puchala, and K. Zyczkowski, New J. Phys. 20, 043028 (2018), arXiv: 1710.04228.

    Article  ADS  Google Scholar 

  43. C. Datta, S. Sazim, A. K. Pati, and P. Agrawal, Ann. Phys. 397, 243 (2018), arXiv: 1710.05015.

    Article  ADS  Google Scholar 

  44. T. Theurer, D. Egloff, L. Zhang, and M. B. Plenio, Phys. Rev. Lett. 122, 190405 (2019), arXiv: 1806.07332.

    Article  ADS  Google Scholar 

  45. J. Xu, Phys. Rev. A 100, 052311 (2019), arXiv: 1907.07289.

    Article  ADS  MathSciNet  Google Scholar 

  46. Z. W. Liu, X. Hu, and S. Lloyd, Phys. Rev. Lett. 118, 060502 (2017), arXiv: 1606.03723.

    Article  ADS  Google Scholar 

  47. M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

    MATH  Google Scholar 

  48. M. D. Choi, Linear Algeb. Appl. 10, 285 (1975).

    Article  Google Scholar 

  49. A. Jamiolkowski, Rep. Math. Phys. 3, 275 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  50. G. Saxena, E. Chitambar, and G. Gour, Phys. Rev. Res. 2, 023298 (2020), arXiv: 1910.00708.

    Article  Google Scholar 

  51. N. Datta, IEEE Trans. Inform. Theor. 55, 2816 (2009).

    Article  Google Scholar 

  52. N. Datta, Int. J. Quantum Inform. 07, 475 (2009).

    Article  Google Scholar 

  53. M. Piani, and J. Watrous, Phys. Rev. Lett. 114, 060404 (2015), arXiv: 1406.0530.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shao-Ming Fei or Cong-Feng Qiao.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11847209, 61727801, and 12075159), the China Postdoctoral Science Foundation (Grant No. 2019M650811), the China Scholarship Council (Grant No. 201904910005), Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology (Grant No. SIQSE202001), Beijing Natural Science Foundation (Grant No. Z190005), the Academician Innovation Platform of Hainan Province, and Academy for Multidisciplinary Studies, Capital Normal University.

Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, ZX., Yang, LM., Fei, SM. et al. Maximum relative entropy of coherence for quantum channels. Sci. China Phys. Mech. Astron. 64, 280311 (2021). https://doi.org/10.1007/s11433-021-1709-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1709-9

PACS number(s)

Navigation