Skip to main content
Log in

Antibiotic resistance and biofilm synthesis genes in airborne Staphylococcus in commercial aircraft cabins

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Passenger air transport is one of the main routes for the global spread of multidrug-resistant bacteria. This may be due to airborne pathogen transmission, which may occur within the commercial aircraft cabin. Because of this, we performed an investigation of aerial contamination by Staphylococcus species in 166 commercial aircraft and analyzed the presence of antibiotic resistance and biofilm synthesis genes in the collected isolates. Bacterial identification was performed by using species-specific primers and partial sequencing of 16S rRNA and tuf genes. The antibiotic resistance genes screened were: mecA, mecC, blaZ, ermA, ermB, ermC, and vanA. For biofilm synthesis, ica locus genes were screened. Fourteen species and four subspecies of Staphylococcus were detected in the analyzed samples. Except for mecC and vanA, all other genes were detected, including the mecA gene in Staphylococcus aureus and Coagulase-negative Staphylococcus isolates. Only S. epidermidis isolates were positive for biofilm formation. To date, this is the first study to report a significant diversity of airborne Staphylococcus and the presence of airborne methicillin-resistant Staphylococcus aureus (MRSA) in the cabin environment in commercial aircraft. Our results point to the importance of indoor air quality monitoring in the cabin environment as a preventive measure for the airborne spread of clinically significant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agência Nacional de Vigilância Sanitária. (2003). Resolução Nº 09. Brasília: ANVISA.

  • Al Hennawi, H., Mahdi, E., & Memish, Z. (2019). Native valve Staphylococcus capitis infective endocarditis: A mini review. Infection, 48(1), 3–5.

    Article  Google Scholar 

  • Altschul, S., Gish, W., Miller, W., Myers, E., & Lipman, D. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.

    Article  CAS  Google Scholar 

  • An der Heiden, M., Hauer, B., Fiebig, L., Glaser-Paschke, G., Stemmler, M., Simon, C., et al. (2017). Contact investigation after a fatal case of extensively drug-resistant tuberculosis (XDR-TB) in an aircraft, Germany, July 2013. Eurosurveillance, 22(12), 1–9.

    Article  Google Scholar 

  • Archer, N., Mazaitis, M., Costerton, J., Leid, J., Powers, M., & Shirtliff, M. (2011). Staphylococcus aureus biofilms: Properties, regulation, and roles in human disease. Virulence, 2(5), 445–459.

    Article  Google Scholar 

  • Arciola, C., Campoccia, D., Ravaioli, S., & Montanaro, L. (2015). Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Frontiers in Cellular and Infection Microbiology, 5, 1–10.

    Article  CAS  Google Scholar 

  • Arciola, C., Gamberini, S., Campoccia, D., Visai, L., Speziale, P., Baldassarri, L., & Montanaro, L. (2005). A multiplex PCR method for the detection of all five individual genes ofica locus in Staphylococcus epidermidis. A survey on 400 clinical isolates from prosthesis-associated infections. Journal of Biomedical Materials Research Part A, 75A(2), 408–413.

    Article  CAS  Google Scholar 

  • Asif, A., Zeeshan, M., Hashmi, I., Zahid, U., & Bhatti, M. (2018). Microbial quality assessment of indoor air in a large hospital building during winter and spring seasons. Building and Environment, 135, 68–73.

    Article  Google Scholar 

  • Azimian, A., Havaei, S., Fazeli, H., Naderi, M., Ghazvini, K., Samiee, S., et al. (2012). Genetic characterization of a vancomycin-resistant Staphylococcus aureus isolate from the respiratory tract of a patient in a University Hospital in Northeastern Iran. Journal of Clinical Microbiology, 50(11), 3581–3585.

    Article  Google Scholar 

  • Barbosa, L., Ferreira, R., Jr., Luiza Mello, P., Garcia Garces, H., Luana Chechi, J., Frachin, T., et al. (2018). Molecular identification and phylogenetic analysis of Bothrops insularis bacterial and fungal microbiota. Journal of Toxicology and Environmental Health, Part A, 81(6), 142–153.

    Article  CAS  Google Scholar 

  • Becker, K., Heilmann, C., & Peters, G. (2014). Coagulase-negative staphylococci. Clinical Microbiology Reviews, 27(4), 870–926.

    Article  Google Scholar 

  • Bergeron, M., Dauwalder, O., Gouy, M., Freydiere, A., Bes, M., Meugnier, H., et al. (2011). Species identification of staphylococci by amplification and sequencing of the tuf gene compared to the gap gene and by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. European Journal of Clinical Microbiology & Infectious Diseases, 30(3), 343–354.

    Article  CAS  Google Scholar 

  • Botelho, A., Nunes, Z., Asensi, M., Gomes, M., Fracalanzza, S., & Figueiredo, A. (2012). Characterization of coagulase-negative staphylococci isolated from hospital indoor air and a comparative analysis between airborne and inpatient isolates of Staphylococcus epidermidis. Journal of Medical Microbiology, 61(Pt_8), 1136–1145.

    Article  CAS  Google Scholar 

  • Chegini, F. M., Baghani, A. N., Hassanvand, M. S., Sorooshian, A., Golbaz, S., Bakhtiari, R., Ashouri, A., Joubani, M. N., & Alimohammadi, M. (2020). Indoor and outdoor airborne bacterial and fungal air quality in kindergartens: Seasonal distribution, genera, levels, and factors influencing their concentration. Building and Environment, 175, 106690.

    Article  Google Scholar 

  • Creamer, E., Shore, A. C., Deasy, E. C., Galvin, S., Dolan, A., Walley, N., McHugh, S., Fitzgerald-Hughes, D., Sullivan, D. J., Cunney, R., Coleman, D. C., & Humphreys, H. (2014). Air and surface contamination patterns of meticillin-resistant Staphylococcus aureus on eight acute hospital wards. Journal of Hospital Infection, 86(3), 201–208.

    Article  CAS  Google Scholar 

  • Damasco, A. P., Costa, T. M., Morgado, P. G. M., Guimarães, L. C., Cavalcante, F. S., Nouér, S. A., & Santos, K. R. N. (2019). Daptomycin and vancomycin non-susceptible methicillin-resistant Staphylococcus aureus clonal lineages from bloodstream infection in a Brazilian teaching hospital. The Brazilian Journal of Infectious Diseases, 23(2), 139–142.

    Article  Google Scholar 

  • Dashti, A., Jadaon, M., Abdulsamad, A., & Dashti, H. (2009). Heat Treatment of Bacteria: A Simple Method of DNA Extraction for Molecular Techniques. Kuwait Medical Journal, 41(2), 117–122.

    Google Scholar 

  • de Rooij, M., Borlée, F., Smit, L., de Bruin, A., Janse, I., Heederik, D., & Wouters, I. (2016). Detection of Coxiella burnetii in Ambient Air after a Large Q Fever Outbreak. PLoS ONE, 11(3), e0151281.

    Article  CAS  Google Scholar 

  • Dechow, M., Sohn, H., & Steinhanses, J. (1997). Concentrations of selected contaminants in cabin air of airbus aircrafts. Chemosphere, 35(1–2), 21–31.

    Article  CAS  Google Scholar 

  • Dehghani, M., Sorooshian, A., Ghorbani, M., Fazlzadeh, M., Miri, M., Badiee, P., Parvizi, A., Ansari, M., Baghani, A. N., & Delikhoon, M. (2018b). Seasonal variation in culturable bioaerosols in a wastewater treatment plant. Aerosol and Air Quality Research, 18(11), 2826–2839.

    Article  CAS  Google Scholar 

  • Dehghani, M., Sorooshian, A., Nazmara, S., Baghani, A. N., & Delikhoon, M. (2018a). Concentration and type of bioaerosols before and after conventional disinfection and sterilization procedures inside hospital operating rooms. Ecotoxicology and Environmental Safety, 164, 277–282.

    Article  CAS  Google Scholar 

  • Duran, N., Ozer, B., Duran, G., Onlen, Y., & Demir, C. (2012). Antibiotic resistance genes & susceptibility patterns in staphylococci. Indian Journal of Medical Research, 135(3), 389–396.

    CAS  Google Scholar 

  • Fernstrom, A., & Goldblatt, M. (2013). Aerobiology and Its role in the transmission of infectious diseases. Journal of Pathogens, 2013, 1–13.

    Article  Google Scholar 

  • Fu, X., Lindgren, T., Guo, M., Cai, G.-H., Lundgren, H., & Norbäck, D. (2013). Furry pet allergens, fungal DNA and microbial volatile organic compounds (MVOCs) in the commercial aircraft cabin environment. Environmental Science: Processes & Impacts, 15(6), 1228.

    CAS  Google Scholar 

  • Fujiyoshi, S., Tanaka, D., & Maruyama, F. (2017). Transmission of airborne bacteria across built environments and its measurement standards: A review. Frontiers in Microbiology, 8, 1–17.

    Article  Google Scholar 

  • Gebreyohannes, G., Nyerere, A., Bii, C., & Sbhatu, D. (2019). Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon, 5(8), e02192.

    Article  Google Scholar 

  • Gotz, F. (2002). Staphylococcus and biofilms. Molecular Microbiology, 43(6), 1367–1378.

    Article  CAS  Google Scholar 

  • Gouy, M., Guindon, S., & Gascuel, O. (2009). SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27(2), 221–224.

    Article  CAS  Google Scholar 

  • Gün, I., & Ekİncİ, F. (2009). Biofilms: Microbial life on surfaces. GIDA - Journal of Food, 4(3), 165–173.

    Google Scholar 

  • Hamzavi, S. S., Amanati, A., Badiee, P., Kadivar, M. R., Jafarian, H., Ghasemi, F., Haghpanah, S., Dehghani, M., & Norouzian Baghani, A. (2019). Changing face of Candida colonization pattern in pediatric patients with hematological malignancy during repeated hospitalizations, results of a prospective observational study (2016–2017) in shiraz, Iran. BMC Infectious Diseases, 19(1), 1–9.

    Article  Google Scholar 

  • Han, Z., Sze To, G., Fu, S., Chao, C., Weng, W., & Huang, Q. (2014). Effect of human movement on airborne disease transmission in an airplane cabin: study using numerical modeling and quantitative risk analysis. BMC Infectious Diseases, 14(434), 1–19.

    Google Scholar 

  • Heß, S., Kneis, D., Österlund, T., Li, B., Kristiansson, E., & Berendonk, T. U. (2019). Sewage from airplanes exhibits high abundance and diversity of antibiotic resistance genes. Environmental Science & Technology, 53(23), 13898–13905.

    Article  CAS  Google Scholar 

  • Hirotaki, S., Sasaki, T., Kuwahara-Arai, K., & Hiramatsu, K. (2011). Rapid and accurate identification of human-associated staphylococci by use of multiplex PCR. Journal of Clinical Microbiology, 49(10), 3627–3631.

    Article  CAS  Google Scholar 

  • Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., & Ciofu, O. (2010). Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents, 35(4), 322–332.

    Article  CAS  Google Scholar 

  • Holme, J. A., Øya, E., Afanou, A. K. J., Øvrevik, J., & Eduard, W. (2020). Characterization and pro-inflammatory potential of indoor mold particles. Indoor Air, 30(4), 662–681.

    Article  CAS  Google Scholar 

  • Jensen, L. B., Frimodt-Møller, N., & Aarestrup, F. M. (1999). Presence ofermgene classes in gram-positive bacteria of animal and human origin in Denmark. FEMS Microbiology Letters, 170(1), 151–158.

    Article  CAS  Google Scholar 

  • Kareem, S., Al-Jubori, S., & Ali, M. (2015). Prevalence of erm genes among methicillin resistant Staphylococcus aureus MRSA Iraqi Isolates. International Journal of Current Microbiology and Applied Sciences, 4(5), 575–585.

    CAS  Google Scholar 

  • Kerschner, H., Harrison, E., Hartl, R., Holmes, M., & Apfalter, P. (2015). First report of mecC MRSA in human samples from Austria: Molecular characteristics and clinical data. New Microbes and New Infections, 3, 4–9.

    Article  CAS  Google Scholar 

  • Kong, E., Johnson, J., & Jabra-Rizk, M. (2016). Community-associated methicillin-resistant Staphylococcus aureus: An enemy amidst us. Plos Pathogens, 12(10), 1005837.

    Article  CAS  Google Scholar 

  • Kulczyński, M., Tomaszewski, M., Łuniewski, M., & Olender, A. (2017). Air transport and the spread of infectious diseases. World Scientific News, 76, 123–135.

    Google Scholar 

  • Kumar, P., & Goel, A. (2016). Prevalence of methicillin resistant staphylococcal bioaerosols in and around residential houses in an urban area in Central India. Journal of Pathogens, 2016, 1–6.

    Article  CAS  Google Scholar 

  • Lakhundi, S., & Zhang, K. (2018). Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clinical Microbiology Reviews, 31(4), e00020-18.

    Article  Google Scholar 

  • Leder, K., & Newman, D. (2005). Respiratory infections during air travel. Internal Medicine Journal, 35(1), 50–55.

    Article  CAS  Google Scholar 

  • Lenart-Boroń, A., Wolny-Koładka, K., Juraszek, K., & Kasprowicz, A. (2017). Phenotypic and molecular assessment of antimicrobial resistance profile of airborne Staphylococcus spp. isolated from flats in Kraków. Aerobiologia, 33(3), 435–444.

    Article  Google Scholar 

  • Mangili, A., Vindenes, T., & Gendreau, M. (2015). Infectious risks of air travel. Microbiology Spectrum, 3(5), 333–344.

    Article  Google Scholar 

  • Marcovecchio, F., & Perrino, C. (2021a). Contribution of primary biological aerosol particles to airborne particulate matter in indoor and outdoor environments. Chemosphere, 264, 128510.

    Article  CAS  Google Scholar 

  • Marcovecchio, F., & Perrino, C. (2021b). Bioaerosol contribution to atmospheric particulate matter in indoor university environments. Sustainability, 13(3), 1149.

    Article  CAS  Google Scholar 

  • McManus, C. J., & Kelley, S. T. (2005). Molecular survey of aeroplane bacterial contamination. Journal of Applied Microbiology, 99(3), 502–508.

    Article  CAS  Google Scholar 

  • Mirhoseini, S. H., Didehdar, M., Akbari, M., Moradzadeh, R., Jamshidi, R., & Torabi, S. (2020). Indoor exposure to airborne bacteria and fungi in sensitive wards of an academic pediatric hospital. Aerobiologia, 36(2), 225–232.

    Article  Google Scholar 

  • Mirhoseini, S., Nikaeen, M., Satoh, K., & Makimura, K. (2016). Assessment of airborne particles in indoor environments: applicability of particle counting for prediction of bioaerosol concentrations. Aerosol and Air Quality Research, 16(8), 1903–1910.

    Article  CAS  Google Scholar 

  • Muhire, B., Martin, D., Brown, J., Navas-Castillo, J., Moriones, E., Zerbini, F., et al. (2013). A genome-wide pairwise-identity-based proposal for the classification of viruses in the genus Mastrevirus (family Geminiviridae). Archives of Virology, 158(6), 1411–1424.

    Article  CAS  Google Scholar 

  • Naddafi, K., Nabizadeh, R., Baghani, A. N., & Fazlzadeh, M. (2019). Bioaerosols in the waterpipe cafés: Genera, levels, and factors influencing their concentrations. Environmental Science and Pollution Research, 26(20), 20297–20307.

    Article  Google Scholar 

  • Nardell, E. (2015). Transmission and institutional infection control of tuberculosis. Cold Spring Harbor Perspectives in Medicine, 6(2), a018192.

    Article  Google Scholar 

  • Natsis, N., & Cohen, P. (2018). Coagulase-negative Staphylococcus skin and soft tissue infections. American Journal of Clinical Dermatology, 19(5), 671–677.

    Article  Google Scholar 

  • Nourbakhsh, F., & Namvar, A. (2016). Detection of genes involved in biofilm formation in Staphylococcus aureus isolates. GMS Hygiene and Infection Control, 11, Doc07.

    Google Scholar 

  • Okiki, P. A., Eromosele, E. S., Ade-Ojo, P., Sobajo, O. A., Idris, O. O., & Agbana, R. D. (2020). Occurrence of mecA and blaZ genes in methicillin-resistant Staphylococcus aureus associated with vaginitis among pregnant women in Ado-Ekiti. Nigeria. New Microbes and New Infections, 38, 100772.

    Article  CAS  Google Scholar 

  • Omidi, M., Firoozeh, F., Saffari, M., Sedaghat, H., Zibaei, M., & Khaledi, A. (2020). Ability of biofilm production and molecular analysis of spa and ica genes among clinical isolates of methicillin-resistant Staphylococcus aureus. BMC Research Notes, 13(1), 19.

    Article  CAS  Google Scholar 

  • Osman, S., La Duc, M., Dekas, A., Newcombe, D., & Venkateswaran, K. (2008). Microbial burden and diversity of commercial airline cabin air during short and long durations of travel. The ISME Journal, 2(5), 482–497.

    Article  CAS  Google Scholar 

  • Pajić, M., Rašić, Z., Velebit, B., Boboš, S., Mihajlović-Ukropina, M., & Radinović, M. et al. (2014). The prevalence of methicillin resistance and Panton-Valentine leukocidin synthesis genes in Staphylococcus aureus isolates of bovine and human origin. Veterinarski Arhiv, 84(3), 205–214.

  • Panesso, D., Planet, P. J., Diaz, L., Hugonnet, J.-E., Tran, T. T., Narechania, A., Munita, J. M., Rincon, S., Carvajal, L. P., Reyes, J., Londoño, A., Smith, H., Sebra, R., Deikus, G., Weinstock, G. M., Murray, B. E., Rossi, F., Arthur, M., & Arias, C. A. (2015). Methicillin-Susceptible, Vancomycin-Resistant Staphylococcus aureus, Brazil. Emerging Infectious Diseases, 21(10), 1844–1848.

    Article  CAS  Google Scholar 

  • Pavia, A. T. (2007). Germs on a plane: Aircraft, international travel, and the global spread of disease. The Journal of Infectious Diseases, 195(5), 621–622.

    Article  Google Scholar 

  • Pereira, E., Schuenck, R., Malvar, K., Iorio, N., Matos, P., Olendzki, A., et al. (2010). Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus haemolyticus: Methicillin-resistant isolates are detected directly in blood cultures by multiplex PCR. Microbiological Research, 165(3), 243–249.

    Article  CAS  Google Scholar 

  • Petersen, E., Chen, L., & Schlagenhauf-Lawlor, P. (2017). Infectious Diseases: A Geographic Guide (2nd ed., pp. 25–34). Hoboken: Wiley-Blackwell.

    Book  Google Scholar 

  • Petersen, T., Rasmussen, S., Hasman, H., Carøe, C., Bælum, J., Charlotte Schultz, A., et al. (2015). Meta-genomic analysis of toilet waste from long distance flights; a step towards global surveillance of infectious diseases and antimicrobial resistance. Scientific Reports, 5, 11444.

    Article  Google Scholar 

  • Pinheiro, L., Brito, C., Oliveira, A., & Pereira, V. (2016). Staphylococcus epidermidis and Staphylococcus haemolyticus: Detection of biofilm genes and biofilm formation in blood culture isolates from patients in a Brazilian teaching hospital. Diagnostic Microbiology and Infectious Disease, 86(1), 11–14.

    Article  CAS  Google Scholar 

  • Rahman, S. (2019). Detection of bacterial population in air conditioner and determine the ability to produce biofilm. Iraqi Journal of Science, 60(3), 432–437.

    Google Scholar 

  • Rosenstein, R., Nerz, C., Biswas, L., Resch, A., Raddatz, G., Schuster, S. C., & Götz, F. (2008). Genome analysis of the meat starter culture bacterium Staphylococcus carnosus TM300. Applied and Environmental Microbiology, 75(3), 811–822.

    Article  CAS  Google Scholar 

  • Schwartz, K., & Morris, S. (2018). Travel and the spread of drug-resistant bacteria. Current Infectious Disease Reports, 20(9), 29.

    Article  Google Scholar 

  • Seiler, G. T., Ostrosky-Zeichner, L., Ferguson, L., Boston, K., Grant, M., & Koehn, J. (2020). 860. A proposed standard for hospital bioaerosol monitoring in avoiding nosocomial mould infections. Open Forum Infectious Diseases, 7(Supplement_1), S469–S470.

    Article  Google Scholar 

  • Seo, Y., Lee, D., Rayamahji, N., Kang, M., & Yoo, H. (2008). Biofilm-forming associated genotypic and phenotypic characteristics of Staphylococcus. spp isolated from animals and air. Research in Veterinary Science, 85(3), 433–438.

    Article  CAS  Google Scholar 

  • Solomon, F. B., Wadilo, F. W., Arota, A. A., & Abraham, Y. L. (2017). Antibiotic resistant airborne bacteria and their multidrug resistance pattern at University teaching referral Hospital in South Ethiopia. Annals of Clinical Microbiology and Antimicrobials, 16(1), 1–7.

    Article  CAS  Google Scholar 

  • Staden, R., Judge, D., & Bonfield, J. (2003). Analyzing Sequences Using the Staden Package and EMBOSS. Introduction to Bioinformatics. https://doi.org/10.1007/978-1-59259-335-4_24

    Article  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739.

    Article  CAS  Google Scholar 

  • Vila, J. (2015). Multidrug-resistant bacteria without borders: Role of international trips in the spread of multidrug-resistant bacteria. Journal of Travel Medicine, 22(5), 289–291.

    Article  Google Scholar 

  • Warfel, J., Beren, J., & Merkel, T. (2012). Airborne Transmission of Bordetella pertussis. Journal of Infectious Diseases, 206(6), 902–906.

    Article  Google Scholar 

  • White, J. K., Nielsen, J. L., Larsen, C. M., & Madsen, A. M. (2020). Impact of dust on airborne Staphylococcus aureus viability, culturability, inflammogenicity, and biofilm forming capacity. International Journal of Hygiene and Environmental Health, 230, 1–10.

    Article  CAS  Google Scholar 

  • Yassin, M. F., & Almouqatea, S. (2010). Assessment of airborne bacteria and fungi in an indoor and outdoor environment. International Journal of Environmental Science & Technology, 7(3), 535–544.

    Article  Google Scholar 

  • Yu, D., Chen, Y., Pan, Y., Li, H., McCormac, M., & Tang, Y. (2008). Staphylococcus gallinarum bacteremia in a patient with chronic hepatitis B virus infection. Annals of Clinical & Laboratory Science, 38(4), 401–404.

    CAS  Google Scholar 

  • Zhao, B., Dewald, C., Hennig, M., Bossert, J., Bauer, M., Pletz, M., & Jandt, K. (2019). Microorganisms @ materials surfaces in aircraft: Potential risks for public health?—A systematic review. Travel Medicine and Infectious Disease, 28, 6–14.

    Article  Google Scholar 

Download references

Acknowledgements

This study was conducted with the support of the National Health Surveillance Agency (ANVISA). We would like to thank immensely Mr. Rodolfo Navarro Nunes for the authorization granted to carry out this study, as well as coordinators Maria Nazaré Alves da Silva and Sonia Maria do Nascimento Oliveira for the partnership with the airlines in all the initial stages and in the execution of this research. Our thanks also go to sanitary inspectors Wellington Lyra and Maria Goretti for their follow-up during all air collections inside the aircraft. We would also like to thank Professor Nassib Bezerra Bueno immensely for his guidance in the statistical analyses carried out on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

EASF and JPMN took part in conception and design; JPMN, DB, MAA, and FLF involved in methodology and data analysis; JPMN and EASF participated in writing—original draft preparation; LA and LAF took part in writing—review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Eurípedes Alves da Silva Filho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 51 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Nascimento, J.P.M., Brandão, D., Ferreira, F.L. et al. Antibiotic resistance and biofilm synthesis genes in airborne Staphylococcus in commercial aircraft cabins. Aerobiologia 37, 733–753 (2021). https://doi.org/10.1007/s10453-021-09714-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-021-09714-7

Keywords

Navigation