Skip to main content
Log in

Investigation of heat transport equation at the microscale via interpolating element-free Galerkin method

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The current paper concerns to develop a new meshless numerical procedure to solve heat transport equation. For this aim, the Crank–Nicolson finite difference idea is used to discrete the time derivative. Thus, a time-discrete scheme is derived. The unconditional stability and convergence of the time-discrete scheme are proved by energy method. Then, the interpolating element-free Galerkin method is applied to get a full-discrete scheme. Furthermore, the convergence rate of the full-discrete formulation is studied. At the end, some examples are considered to compare the theoretical results with the computational results and also to show the efficiency and ability of the proposed numerical procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abbaszadeh M, Dehghan M (2020) A finite-difference procedure to solve weakly singular integro partial differential equation with space-time fractional derivatives. Eng Comput. https://doi.org/10.1007/s00366-020-00936-w

  2. Abbaszadeh M, Dehghan M (2019) Meshless upwind local radial basis function-finite difference technique to simulate the time- fractional distributed-order advection–diffusion equation. Eng Comput. https://doi.org/10.1007/s00366-019-00861-7

  3. Abbaszadeh M, Dehghan M (2019) The interpolating element-free Galerkin method for solving Korteweg–de Vries-Rosenau-regularized long-wave equation with error analysis. Nonlinear Dyn 96:1345–1365

    Article  MATH  Google Scholar 

  4. Abbaszadeh M, Dehghan M (2020) Meshless local numerical procedure based on interpolating moving least squares approximation and exponential time differencing fourth-order Runge-Kutta (ETDRK4) for solving stochastic parabolic interface problems. Eng Comput In press . https://doi.org/10.1007/s00366-020-01057-0

  5. Abbaszadeh M, Dehghan M, Khodadadian A, Heitzinger C (2021) Error analysis of interpolating element free Galerkin method to solve non-linear extended Fisher–Kolmogorov equation. Comput Math Appl 80:247–262

  6. Abbaszadeh M, Dehghan M, Khodadadian A, Noii N, Heitzinger C, Wick T (2021) A reduced-order variational multiscale interpolating element free Galerkin technique based on proper orthogonal decomposition for solving Navier-Stokes equations coupled with a heat transfer equation: Nonstationary incompressible Boussinesq equations. J Comput Phys 426:109875

    Article  MathSciNet  MATH  Google Scholar 

  7. Abbaszadeh M, Dehghan M (2020) Numerical and analytical investigations for solving the inverse tempered fractional diffusion equation via interpolating element-free Galerkin (IEFG) method. J Therm Anal Calorim. https://doi.org/10.1007/s10973-020-10116-z

  8. Abbaszadeh M, Dehghan M, Navon IM (2020) A proper orthogonal decomposition variational multiscale meshless interpolating element-free Galerkin method for incompressible magnetohydrodynamics flow. Int J Numer Meth Fluids 92(10):1415–1436

    Article  MathSciNet  Google Scholar 

  9. Belytschko T, Lu YY, Gu L (1994) Element free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MathSciNet  MATH  Google Scholar 

  10. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47

    Article  MATH  Google Scholar 

  11. Cheng YM, Bai F, Peng M (2014) A novel interpolating element-free Galerkin (IEFG) method for two-dimensional elastoplasticity. Appl Math Model 38(21):5187–5197

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheng YM, Bai F, Liu C, Peng M (2016) Analyzing nonlinear large deformation with an improved element-free Galerkin method via the interpolating moving least-squares method. Int J Comput Mater Sci Eng 5:1650023

    Google Scholar 

  13. Chen L, Cheng YM (2018) The complex variable reproducing kernel particle method for bending problems of thin plates on elastic foundations. Comput Mech 62:67–80

    Article  MathSciNet  MATH  Google Scholar 

  14. Cheng X, Duan J, Li DF (2019) A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction-diffusion equations. Appl Math Comput 346:452–464

    MathSciNet  MATH  Google Scholar 

  15. Chung HJ, Belytschko T (1998) An error estimate in the EFG method. Comput Mech 21:91–100

    Article  MathSciNet  MATH  Google Scholar 

  16. Dai W, Nassar R (2000) A compact finite difference scheme for solving a three-dimensional heat transport equation in a thin film. Numer Methods Partial Differ Eq 16:441–458

    Article  MathSciNet  MATH  Google Scholar 

  17. Dehghan M (2007) Time-splitting procedures for the solution of the two-dimensional transport equation. Kybernetes 36(5):791–805

    Article  MATH  Google Scholar 

  18. Dehghan M, Abbaszadeh M (2019) Error analysis and numerical simulation of magnetohydrodynamics (MHD) equation based on the interpolating element free Galerkin (IEFG) method. Appl Numer Math 137:252–273

    Article  MathSciNet  MATH  Google Scholar 

  19. Dehghan M, Abbaszadeh M (2017) A local meshless method for solving multi-dimensional Vlasov–Poisson and Vlasov–Poisson–Fokker–Planck systems arising in plasma physics. Eng Comput 33:961–981

    Article  Google Scholar 

  20. Dehghan M, Narimani N (2020) The element-free Galerkin method based on moving least squares and moving Kriging approximations for solving two-dimensional tumor-induced angiogenesis model. Eng Comput 36:1517–1537

    Article  Google Scholar 

  21. Feng-Xin S, Ju-Feng W, Yu-Min C (2013) An improved interpolating element-free Galerkin method for elasticity. Chin Phys B 22(12):120203

    Article  Google Scholar 

  22. Hamid M, Usman M, Wang W, Tian Z (2020) Hybrid fully spectral linearized scheme for time-fractional evolutionary equations, Mathematical Methods in Applied Sciences, in press, https://doi.org/10.1002/mma.6996

  23. Hamid M, Usman M, UI Haq R, Tian Z, Wang W (2020) Linearized stable spectral method to analyze two-dimensional nonlinear evolutionary and reaction-diffusion models. Numer Methods Partial Differ Equ in press. https://doi.org/10.1002/num.22659

  24. Hamid M, Usman M, Haq RU, Wang W (2021) A Chelyshkov polynomial based algorithm to analyze the transport dynamics and anomalous diffusion in fractional model. Physica A 551:124227

    Article  MathSciNet  MATH  Google Scholar 

  25. Hamid M, Usman M, Zubair T, Ul Haq R, Shafee A (2019) An efficient analysis for N-soliton, Lump and lump-kink solutions of time-fractional (2+1)-Kadomtsev–Petviashvili equation. Physica A Stat Mech Appl 528:121320

  26. Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37:141–158

    Article  MathSciNet  MATH  Google Scholar 

  27. Li D, Bai F, Cheng YM, Liew KM (2012) A novel complex variable element-free Galerkin method for two-dimensional large deformation problems. Comput Methods Appl Mech Eng 233:1–10

    MathSciNet  MATH  Google Scholar 

  28. Li X (2015) A meshless interpolating Galerkin boundary node method for Stokes flows. Eng Anal Bound Element 51:112–122

    Article  MathSciNet  MATH  Google Scholar 

  29. Li X, Wang Q (2016) Analysis of the inherent instability of the interpolating moving least squares method when using improper polynomial bases. Eng Anal Bound Element 73:21–34

    Article  MathSciNet  MATH  Google Scholar 

  30. Li X, Dong H (2018) The element-free Galerkin method for the nonlinear p-Laplacian equation. Comput Math Appl 75:2549–2560

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu H, Ahmad S, Chen J, Zhao J (2020) Molecular dynamics study of the nanoscale boiling heat transfer process on nanostructured surfaces. Int Commun Heat Mass Transf 119:104963

    Article  Google Scholar 

  32. Liu F, Cheng YM (2018) The improved element-free Galerkin method based on the nonsingular weight functions for inhomogeneous swelling of polymer gels. Int J Appl Mech 10(4), Article number 1850047

  33. Liew KM, Cheng YM (2009) Complex variable boundary element-free method for two-dimensional elastodynamic problems. Comput Methods Appl Mech Eng 198:3925–3933

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu L, Yang H (2007) A paralleled element-free Galerkin analysis for structures with cyclic symmetry. Eng Comput 23:137–144

    Article  Google Scholar 

  35. Jannesari Z, Tatari M (2020) Magnetohydrodynamics (MHD) simulation via an adaptive element free Galerkin method. Eng Comput in press . https://doi.org/10.1007/s00366-020-01079-8

  36. Jiwari R, Pandit S, Mittal RC (2012) A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Diriclet and Neumann boundary conditions. Appl Math Comput 218:7279–7294

    MathSciNet  MATH  Google Scholar 

  37. Jiwari R, Pandit S, Mittal RC (2012) Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method. Comput Phys Commun 183:600–616

    Article  MathSciNet  MATH  Google Scholar 

  38. Jiwari R, Kumar V, Singh S (2020) Lie group analysis, exact solutions and conservation laws to compressible isentropic Navier–Stokes equation. Eng Comput. https://doi.org/10.1007/s00366-020-01175-9

  39. Ju-Feng W, Feng-Xin S, Yu-Min C (2012) An improved interpolating element-free Galerkin method with a nonsingular weight function for two-dimensional potential problems. Chin Phys B 21(9):090204

    Article  Google Scholar 

  40. Meng ZJ, Cheng H, Ma LD, Cheng YM (2018) The dimension split element-free Galerkin method for three-dimensional potential problems. Acta Mech Sin/Lixue Xuebao 34(3):462–474

    Article  MathSciNet  MATH  Google Scholar 

  41. Ozisik MN, Tzou DY (1994) On the wave theory in heat conduction. ASME J Heat Trans 116:526–536

    Article  Google Scholar 

  42. Qiu TQ, Tien CL (1993) Heat transfer mechanisms during short-pulse laser heating of metals. ASME J Heat Trans 115:835–841

    Article  Google Scholar 

  43. Qiu TQ, Tien CL (1992) Short-pulse laser heating on metals. Int J Heat Mass Trans 35:719–726

    Article  Google Scholar 

  44. Ren H, Cheng Y (2012) The interpolating element-free Galerkin (IEFG) method for two-dimensional potential problems. Eng Anal Bound Elem 36(5):873–880

    Article  MathSciNet  MATH  Google Scholar 

  45. Ren HP, Zhang W (2009) An improved boundary element-free method (IBEFM) for two-dimensional potential problems. Chin Phys B 18(10):4065–4073

    Article  Google Scholar 

  46. Ren HP, Cheng YM, Zhang W (2010) An interpolating boundary element-free method (IBEFM) for elasticity problems. Sci Chin Phys Mech Astron 53(4):758–766

    Article  Google Scholar 

  47. Ren HP, Cheng J, Huang A (2012) The complex variable interpolating moving least-squares method. Appl Math Comput 219:1724–1736

    MathSciNet  MATH  Google Scholar 

  48. Sun F, Wang J, Cheng YM (2013) An improved interpolating element-free Galerkin method for elasticity. Chin Phys B 22(12):120203

    Article  Google Scholar 

  49. Sun F, Wang J, Cheng YM, Huang A (2015) Error estimates for the interpolating moving least-squares method in n-dimensional space. Appl Numer Math 98:79–105

    Article  MathSciNet  MATH  Google Scholar 

  50. Tzou DY (1996) Macro to micro heat transfer. Taylor & Francis, Washington D.C

    Google Scholar 

  51. Usman M, Hamid M, Ullah Khalid M . S, Ul Haq R, Liu M (2020) A robust scheme based on novel-operational matrices for some classes of time-fractional nonlinear problems arising in mechanics and mathematical physics. Numer Methods Partial Differ Equ. https://doi.org/10.1002/num.22492

  52. Yadav OP, Jiwari R (2019) A finite element approach for analysis and computational modelling of coupled reaction diffusion models. Numer Methods Partial Differ Equ 35(2):830–850

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang J, Wang J, Sun F, Cheng YM (2013) An interpolating boundary element-free method with nonsingular weight function for two-dimensional potential problems. Int J Comput Methods 10:1350043

    Article  MathSciNet  MATH  Google Scholar 

  54. Wang J, Sun F, Cheng YM, Huang A (2014) Error estimates for the interpolating moving least-squares method. Appl Math Comput 245:321–342

    MathSciNet  MATH  Google Scholar 

  55. Wang YM, Wang T (2018) A compact ADI method and its extrapolation for time fractional sub-diffusion equations with nonhomogeneous Neumann boundary conditions. Comput Math Appl 75:721–73

    Article  MathSciNet  MATH  Google Scholar 

  56. Zheng B, Tang S, Sun P, Zhao Q, Liu Y, Wang G, Meng J, Shen Y, Chang R (2020) Effect of the single vacancy in particle pile on heat transfer performance of particle pile. Int Commun Heat Mass Transf 119:104914

    Article  Google Scholar 

  57. Xia G, Wang J, Zhou W, Ma D, Wang J (2020) Orientation effects on liquid-vapor phase change heat transfer on nanoporous membranes. Int Commun Heat Mass Transf 119:104934

    Article  Google Scholar 

Download references

Acknowledgements

We would like to appreciate reviewers for their beneficial comments and suggestions that have improved our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Abbaszadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbaszadeh, M., Dehghan, M. Investigation of heat transport equation at the microscale via interpolating element-free Galerkin method. Engineering with Computers 38 (Suppl 4), 3317–3333 (2022). https://doi.org/10.1007/s00366-021-01425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01425-4

Keywords

Navigation