Skip to main content
Log in

One-pot hydrothermal fabrication of BiVO4/Fe3O4/rGO composite photocatalyst for the simulated solar light-driven degradation of Rhodamine B

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Fabrication of easily recyclable photocatalyst with excellent photocatalytic activity for degradation of organic pollutants in wastewater is highly desirable for practical application. In this study, a novel ternary magnetic photocatalyst BiVO4/Fe3O4/reduced graphene oxide (BiVO4/Fe3O4/rGO) was synthesized via a facile hydrothermal strategy. The BiVO4/Fe3O4 with 0.5 wt% of rGO (BiVO4/Fe3O4/0.5% rGO) exhibited superior activity, degrading greater than 99% Rhodamine B (RhB) after 120 min solar light radiation. The surface morphology and chemical composition of BiVO4/Fe3O4/rGO were studied by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV visible diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The free radicals scavenging experiments demonstrated that hole (h+) and superoxide radical (O2•−) were the dominant species for RhB degradation over BiVO4/Fe3O4/rGO under solar light. The reusability of this composite catalyst was also investigated after five successive runs under an external magnetic field. The BiVO4/Fe3O4/rGO composite was easily separated, and the recycled catalyst retained high photocatalytic activity. This study demonstrates that catalyst BiVO4/Fe3O4/rGO possessed high dye removal efficiency in water treatment with excellent recyclability from water after use. The current study provides a possibility for more practical and sustainable photocatalytic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed T, Zhang H, Gao Y Y, Xu H, Zhang Y (2018). Surfactant-free synthesis of m-BiVO4 nanoribbons and enhanced visible-light photocatalytic properties. Materials Research Bulletin, 99: 298–305

    Article  CAS  Google Scholar 

  • Baig R B N, Verma S, Varma R S, Nadagouda M N (2016). Magnetic Fe@g-C3N4: A photoactive catalyst for the hydrogenation of alkenes and alkynes. ACS Sustainable Chemistry & Engineering, 4(3): 1661–1664

    Article  CAS  Google Scholar 

  • Bao N, Yin Z, Zhang Q, He S, Hu X, Miao X (2016). Synthesis of flower-like monoclinic BiVO4/surface rough TiO2 ceramic fiber with heterostructures and its photocatalytic property. Ceramics International, 42(11, Part B): 1791–1800

    Article  CAS  Google Scholar 

  • Biswas M R U D, Cho K Y, Na J D, Oh W C (2019). Highly electro-conductive graphene-decorated PANI-BiVO4 polymer-semiconductor nanocomposite with outstanding photocatalytic performance. Materials Science and Engineering B, 251: 114469

    Article  CAS  Google Scholar 

  • Chen S, Yang Y, Ji M, Liu W (2011). Preparation, characterisation and activity evaluation of CaCO3/ZnO photocatalyst. Journal of Experimental Nanoscience, 6(3): 324–336

    Article  CAS  Google Scholar 

  • Chen Y, Zhai B, Liang Y (2019). Enhanced degradation performance of organic dyes removal by semiconductor/MOF/graphene oxide composites under visible light irradiation. Diamond and Related Materials, 98: 107508

    Article  CAS  Google Scholar 

  • Dong S, Cui Y, Wang Y, Li Y, Hu L, Sun J, Sun J (2014). Designing three-dimensional acicular sheaf shaped BiVO4/reduced graphene oxide composites for efficient sunlight-driven photocatalytic degradation of dye wastewater. Chemical Engineering Journal, 249: 102–110

    Article  CAS  Google Scholar 

  • Feng X, Guo H, Patel K, Zhou H, Lou X (2014). High performance, recoverable Fe3O4-ZnO nanoparticles for enhanced photocatalytic degradation of phenol. Chemical Engineering Journal, 244: 327–334

    Article  CAS  Google Scholar 

  • Gan Z X, Wu X L, Meng M, Zhu X B, Yang L, Chu P K (2014). Photothermal contribution to enhanced photocatalytic performance of graphene-based nanocomposites. ACS Nano, 8(9): 9304–9310

    Article  CAS  Google Scholar 

  • Gao N, Lu Z, Zhao X, Zhu Z, Wang Y, Wang D, Hua Z, Li C, Huo P, Song M (2016). Enhanced photocatalytic activity of a double conductive C/Fe3O4/Bi2O3 composite photocatalyst based on biomass. Chemical Engineering Journal, 304: 351–361

    Article  CAS  Google Scholar 

  • Gao S, Guo C, Lv J, Wang Q, Zhang Y, Hou S, Gao J, Xu J (2017). A novel 3D hollow magnetic Fe3O4/BiOI heterojunction with enhanced photocatalytic performance for bisphenol A degradation. Chemical Engineering Journal, 307: 1055–1065

    Article  CAS  Google Scholar 

  • Hu G, Zhang Z, Zhang Z, Zhang X, Li T (2021). Size and shape effects of MnFe2O4 nanoparticles as catalysts for reductive degradation of dye pollutants. Frontiers of Environmental Science & Engineering, 15(5): 108

    Article  CAS  Google Scholar 

  • Huang S, Zhao J, Wu C, Wang X, Fei S, Zhang Q, Wang Q, Chen Z, Uvdal K, Hu Z (2019a). ZIF-assisted construction of magnetic multiple core-shell Fe3O4@ZnO@N-doped carbon composites for effective photocatalysis. Chemical Engineering Science, 209: 115185

    Article  CAS  Google Scholar 

  • Huang Y, Guo Z, Liu H, Zhang S, Wang P, Lu J, Tong Y (2019b). Heterojunction architecture of N-doped WO3 nanobundles with Ce2S3 nanodots hybridized on a carbon textile enables a highly efficient flexible photocatalyst. Advanced Functional Materials, 29(45): 1903490

    Article  CAS  Google Scholar 

  • Jiang J, Li H, Zhang L Z (2012). New insight into daylight photocatalysis of AgBr@Ag: Synergistic effect between semiconductor photocatalysis and plasmonic photocatalysis. Chemistry (Weinheim an der Bergstrasse, Germany), 18(20): 6360–6369

    CAS  Google Scholar 

  • Jiang R, Wu D, Lu G, Yan Z, Liu J, Zhou R, Nkoom M (2019). Fabrication of Fe3O4 quantum dots modified BiOCl/BiVO4 p-n heterojunction to enhance photocatalytic activity for removing broad-spectrum antibiotics under visible light. Journal of the Taiwan Institute of Chemical Engineers, 96: 681–690

    Article  CAS  Google Scholar 

  • Kim J H, Lee J S (2019). Elaborately modified BiVO4 photoanodes for solar water splitting. Advanced Materials, 31(20): 1806938

    Article  CAS  Google Scholar 

  • Li K, Lu X, Zhang Y, Liu K, Huang Y, Liu H (2020a). Bi3TaO7/Ti3C2 heterojunctions for enhanced photocatalytic removal of water-borne contaminants. Environmental Research, 185: 109409

    Article  CAS  Google Scholar 

  • Li W, Yu R, Li M, Guo N, Yu H, Yu Y (2019a). Photocatalytical degradation of diclofenac by Ag-BiOI-rGO: Kinetics, mechanisms and pathways. Chemosphere, 218: 966–973

    Article  CAS  Google Scholar 

  • Li X, Wei D, Ye L, Li Z (2019b). Fabrication of Cu2O-RGO/BiVO4 nanocomposite for simultaneous photocatalytic CO2 reduction and benzyl alcohol oxidation under visible light. Inorganic Chemistry Communications, 104: 171–177

    Article  CAS  Google Scholar 

  • Li Y, Xia Y, Liu K, Ye K, Wang Q, Zhang S, Huang Y, Liu H (2020b). Constructing Fe-MOF-derived Z-scheme photocatalysts with enhanced charge transport: Nanointerface and carbon sheath synergistic effect. ACS Applied Materials & Interfaces, 12(22): 25494–25502

    Article  CAS  Google Scholar 

  • Li Y, Xiao X Y, Ye Z H (2018). Facile fabrication of tetragonal scheelite (t-s) BiVO4/g-C3N4 composites with enhanced photocatalytic performance. Ceramics International, 44(6): 7067–7076

    Article  CAS  Google Scholar 

  • Li Y, Zhang H, Liu P, Wang D, Li Y, Zhao H (2013). Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity. Small, 9(19): 3336–3344

    CAS  Google Scholar 

  • Luo Y, Tan G, Dong G, Ren H, Xia A (2016). A comprehensive investigation of tetragonal Gd-doped BiVO4 with enhanced photo-catalytic performance under sun-light. Applied Surface Science, 364: 156–165

    Article  CAS  Google Scholar 

  • Luo Y, Tan G, Dong G, Zhang L, Huang J, Yang W, Zhao C, Ren H (2015). Structural transformation of Sm3+ doped BiVO4 with high photocatalytic activity under simulated sun-light. Applied Surface Science, 324: 505–511

    Article  CAS  Google Scholar 

  • Ma Y X, La P Q, Lei W J, Lu C P, Du X Y (2016). Adsorption of Hg (II) from aqueous solution using amino-functionalized graphite nanosheets decorated with Fe3O4 nanoparticles. Desalination and Water Treatment, 57(11): 5004–5012

    Article  CAS  Google Scholar 

  • Malathi A, Madhavan J, Ashokkumar M, Arunachalam P (2018). A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications. Applied Catalysis A, General, 555: 47–74

    Article  CAS  Google Scholar 

  • Mao W, Zhang L, Wang T, Bai Y, Guan Y (2021). Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater. Frontiers of Environmental Science & Engineering, 15(4): 52

    Article  CAS  Google Scholar 

  • Mclaren A, Valdes-Solis T, Li G, Tsang S C (2009). Shape and size effects of ZnO nanocrystals on photocatalytic activity. Journal of the American Chemical Society, 131(35): 12540–12541

    Article  CAS  Google Scholar 

  • Meng J, Pei J, He Z, Wu S, Lin Q, Wei X, Li J, Zhang Z (2017). Facile synthesis of g-C3N4 nanosheets loaded with WO3 nanoparticles with enhanced photocatalytic performance under visible light irradiation. RSC Advances, 7(39): 24097–24104

    Article  Google Scholar 

  • Meng X C, Li Z Z, Zhang Z S (2018). Palladium nanoparticles and rGO co-modified BiVO4 with greatly improved visible light-induced photocatalytic activity. Chemosphere, 198: 1–12

    Article  CAS  Google Scholar 

  • Nakata K, Fujishima A (2012). TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 13(3): 169–189

    Article  CAS  Google Scholar 

  • Nguyen-Phan T D, Pham V H, Shin E W, Pham H D, Kim S, Chung J S, Kim E J, Hur S H (2011). The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chemical Engineering Journal, 170(1): 226–232

    Article  CAS  Google Scholar 

  • Nikam S, Joshi S (2016). Irreversible phase transition in BiVO4 nanostructures synthesized by a polyol method and enhancement in photo degradation of methylene blue. RSC Advances, 6(109): 107463–107474

    Article  CAS  Google Scholar 

  • Quiroz-Cardoso O, Oros Ruiz S, Solis Gomez A, Lopez R, Gomez R (2019). Enhanced photocatalytic hydrogen production by CdS nanofibers modified with graphene oxide and nickel nanoparticles under visible light. Fuel, 237: 227–235

    Article  CAS  Google Scholar 

  • Ren X, Yan T, Wu D, Feng R, Wei Q (2014). An excellent-responding ethanol sensor with quasi p-n heterojunction based on the composite material of Fe3O4 and Cu2O. Journal of Molecular Liquids, 198: 388–391

    Article  CAS  Google Scholar 

  • Roy A, Majumdar P, Sengupta P, Kundu S, Shinde S, Jha A, Pramanik K, Saha H (2020). A photoelectrochemical supercapacitor based on a single BiVO4-RGO bilayer photocapacitive electrode. Electrochimica Acta, 329: 135170

    Article  CAS  Google Scholar 

  • Sánchez-Martínez D, Hernández Uresti D B, Torres Martinez L M, Mejia-Rosales S (2015). Photocatalytic properties of BiVO4 synthesized by microwave-assisted hydrothermal method under simulated sunlight irradiation. Research on Chemical Intermediates, 41(11): 8839–8854

    Article  CAS  Google Scholar 

  • Sang Y, Zhao Z, Tian J, Hao P, Jiang H, Liu H, Claverie J P (2014). Enhanced photocatalytic property of reduced graphene oxide/TiO2 nanobelt surface heterostructures constructed by an in situ photochemical reduction method. Small, 10(18): 3775–3782

    Article  CAS  Google Scholar 

  • Song L J, Pang Y Y, Zheng Y J, Chen C F, Ge L (2017). Design, preparation and enhanced photocatalytic activity of porous BiOCl/BiVO4 microspheres via a coprecipitation-hydrothermal method. Journal of Alloys and Compounds, 710: 375–382

    Article  CAS  Google Scholar 

  • Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S B T, Ruoff R S (2006). Graphene-based composite materials. Nature, 442(7100): 282–286

    Article  CAS  Google Scholar 

  • Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7): 1558–1565

    Article  CAS  Google Scholar 

  • Tauc J (1970). Absorption edge and internal electric fields in amorphous semiconductors. Materials Research Bulletin, 5(8): 721–729

    Article  CAS  Google Scholar 

  • Tu W, Zhou Y, Zou Z (2013). Versatile graphene-promoting photocatalytic performance of semiconductors: basic principles, synthesis, solar energy conversion, and environmental applications. Advanced Functional Materials, 23(40): 4996–5008

    Article  CAS  Google Scholar 

  • Wang J, Song Y, Hu J, Li Y, Wang Z, Yang P, Wang G, Ma Q, Che Q, Dai Y, Huang B (2019). Photocatalytic hydrogen evolution on P-type tetragonal zircon BiVO4. Applied Catalysis B: Environmental, 251: 94–101

    Article  CAS  Google Scholar 

  • Wang X J, Liu H L, Wan X L, Wang J R, Chang L L (2013). Additivefree solvothermal synthesis of peanut-like BiVO4 powders with enhanced photocatalysis activity. Crystal Research and Technology, 48(12): 1066–1072

    Article  CAS  Google Scholar 

  • Xing X, Ma Y, Li J, Fan G, Ding H, Ma X, Yang L, Xi G (2014). Facile one-pot synthesis and photocatalytic properties of hierarchically structural BiVO4 with different morphologies. CrystEngComm, 16(44): 10218–10226

    Article  CAS  Google Scholar 

  • Xiong S M, Wu T H, Fan Z H, Zhao D Q, Du M, Xu X (2017). Preparation of a leaf-like BiVO4-Reduced graphene oxide composite and its photocatalytic activity. Journal of Nanomaterials, 2017(12): 1–12

    Article  CAS  Google Scholar 

  • Yan Y, Ni T, Du J, Li L, Fu S, Li K, Zhou J (2018). Green synthesis of balsam pear-shaped BiVO4/BiPO4 nanocomposite for degradation of organic dye and antibiotic metronidazole. Dalton Transactions (Cambridge, England), 47(17): 6089–6101

    Article  CAS  Google Scholar 

  • Yang R, Zhu Z, Hu C, Zhong S, Zhang L, Liu B, Wang W (2020). One-step preparation (3D/2D/2D) BiVO4/FeVO4@rGO heterojunction composite photocatalyst for the removal of tetracycline and hexavalent chromium ions in water. Chemical Engineering Journal, 390: 124522

    Article  CAS  Google Scholar 

  • Yu J, Kudo A (2006). Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. Advanced Functional Materials, 16(16): 2163–2169

    Article  CAS  Google Scholar 

  • Zeng J, Zhong J, Li J (2017). Fabrication of CdS modified BiVO4 with enhanced sunlight photocatalytic performance. Inor. Inorganic and Nano-Metal Chemistry, 47(12): 1728–1732

    Article  CAS  Google Scholar 

  • Zeng J, Zhong J, Li J, Xiang Z, Liu X, Chen J (2014). Improvement of photocatalytic activity under solar light of BiVO4 microcrystals synthesized by surfactant-assisted hydrothermal method. Materials Science in Semiconductor Processing, 27: 41–46

    Article  CAS  Google Scholar 

  • Zhang G C, Zhong J L, Xu M, Yang Y, Li Y, Fang Z X, Tang S F, Yuan D L, Wen B, Gu J M (2019a). Ternary BiVO4/NiS/Au nanocomposites with efficient charge separations for enhanced visible light photocatalytic performance. Chemical Engineering Journal, 375: 122093

    Article  CAS  Google Scholar 

  • Zhang M, Gong J L, Zeng G M, Zhang P, Song B, Cao W C, Liu H Y, Huan Y (2018). Enhanced degradation performance of organic dyes removal by bismuth vanadate-reduced graphene oxide composites under visible light radiation. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 559: 169–183

    CAS  Google Scholar 

  • Zhang W, Sun Y, Dong F, Zhang W, Duan S, Zhang Q (2014). Facile synthesis of organic-inorganic layered nanojunctions of g-C3N4/(BIO)2CO3 as efficient visible light photocatalyst. Dalton Transections, 43(31): 12026–12036

    Article  CAS  Google Scholar 

  • Zhang W, Wang M, Zhao W, Wang B (2013). Magnetic composite photocatalyst ZnFe2O4/BiVO4: Synthesis, characterization, and visible-light photocatalytic activity. Dalton Transactions (Cambridge, England), 42(43): 15464–15474

    Article  CAS  Google Scholar 

  • Zhang X, Zhang J, Yu J, Zhang Y, Yu F, Jia L, Tan Y, Zhu Y, Hou B (2019). Enhancement in the photocatalytic antifouling efficiency over cherimoya-like InVO4/BiVO4 with a new vanadium source. Journal of Colloid and Interface Science, 533: 358–368

    Article  CAS  Google Scholar 

  • Zhu R, Tian F, Yang R, He J, Zhong J, Chen B (2019). Z scheme system ZnIn2S4/RGO/BiVO4 for hydrogen generation from water splitting and simultaneous degradation of organic pollutants under visible light. Renewable Energry, 139(AUG): 22–27

    Article  Google Scholar 

  • Zhu W Y, Sun F Q, Goei R, Zhou Y (2017). Facile fabrication of RGO-WO3 composites for effective visible light photocatalytic degradation of sulfamethoxazole. Applied Catalysis B: Environmental, 207: 93–102

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Grant No. 51778175); the State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology) (No. 2021TS03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Ding or Shanshan Yang.

Additional information

Highlights

• BiVO4/Fe3O4/rGO has excellent photocatalytic activity under solar light radiation.

• It can be easily separated and collected from water in an external magnetic field.

• BiVO4/Fe3O4/0.5% rGO exhibited the highest RhB removal efficiency of over 99%.

• Hole (h+) and superoxide radical (O2•−) dominate RhB photo-decomposition process.

• The reusability of this composite was confirmed by five successive recycling runs.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Chen, C., Ding, J. et al. One-pot hydrothermal fabrication of BiVO4/Fe3O4/rGO composite photocatalyst for the simulated solar light-driven degradation of Rhodamine B. Front. Environ. Sci. Eng. 16, 36 (2022). https://doi.org/10.1007/s11783-021-1470-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-021-1470-y

Keywords

Navigation