Skip to main content
Log in

The Measurement Problem, an Ontological Solution

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A physical mechanical sequence is proposed representing measurement interactions ‘hidden' within QM's proverbial ‘black box'. Our ‘beam splitter' pairs share a polar angle, but head in opposite directions, so ‘led' by opposite (+ or −) hemisphere rotations. For orbital ‘ellipticity', we use the inverse value momentum ‘pairs' of Maxwell's ‘linear' and ‘curl' momenta, seen as vectors on the Poincare spherical surface. Values change inversely from 0 to 1 over 90 degrees, then ± inverts. (‘Linear' goes to 0 at each pole, where ‘curl' is + or − 1). Detector polarising screens consist of electrons with the same vector distributions, but polar angles set independently by A & B. The absorption/re-emission interaction process is modelled as surface vector additions at the angle of polar latitude of each interaction. This ‘collapse' of characteristic ‘wave values' is really then simply ‘re-polarisation', with new ellipticity. We then obtain the relation Cosθ at polarisers. We may simplify this to new ellipses with major/minor axis values. Considering as spherical orbital angular momentum (OAM) rotation we invoke the unique quality of spheres to rotate concurrently on three axes! Rotating on y or z axes concurrent with x axis spin can return surface points to starting positions with non-integer x axis rotations, from half to infinity! (i.e. adding one 180° y or z axis rotation to a 180° x axis rotation produces ‘spin half'). Second interactions at photomultiplier/ analysers are identical but at two orthogonal ‘channels'. Vector addition interactions at BOTH channel orientations normally produce a vector value of adequate amplitude to give a *click* from the MAJOR axis direction. At the ‘crossover' points at near circular polarity the orthogonal ‘certainty' is ~ 50:50, so both or neither channels may produce a ‘click'. The apparently unphysical but proved ‘Malus' law' relation; Cos2θ emerges physically from the 2nd set of interactions. The main departure from QM's assumptions are; That the original pair members each actually possessed two inverse momenta sets; ‘curl' and ‘linear'. Also that complex ‘vector additions' of those pairs occurs. Vector quantities allow A & B to reverse their OWN finding by reversing dial setting, reproducing experimental outputs without problematic ‘non-locality'.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Danner, A., Demirel, B., Kersten, W., Lemmel, H., Wagner, R., Sponar, S., Hasegawa, Y.: Spin-rotation coupling observed in neutron interferometry. NPJ Quantum Inf. 6, 23 (2020)

    Article  ADS  Google Scholar 

  2. Rouch, H., Zeilinger, A., Badurek, G., Wilfing, A.B., Bonse, W.: Verification of coherent spinor rotation of fermions. Phys. Lett. A 54(6), 425–427 (1975)

    Article  ADS  Google Scholar 

  3. Ozawa, M.: Physical content of Heisenberg’s uncertainty relation: limitation and reformulation. Phys. Lett. A 318, 21 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. Erhart, J., Sponar, S., Sulyok, G., Badurek, G., Ozawa, M., Hasegawa, Y.: Experimental demonstration of a universally valid error disturbance uncertainty relation in spin measurements. Nat. Phys. 8, 185 (2012). https://doi.org/10.1038/nphys2194

    Article  Google Scholar 

  5. Hossenfelder, S.: Lost in Maths, p. 123. Basic Books, New York (2018)

    Google Scholar 

  6. Weinberg, S.: Lectures on Quantum Mechanics. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  7. Nehrkorn, J., Schnegg, A., Holldack, K., Stoll, S.: General magnetic transition dipole moments for electron paramagnetic resonance. Phys. Rev. Lett. 114, 010801 (2015)

    Article  ADS  Google Scholar 

  8. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, p. 146. Cambridge Press, Cambridge (1987)

    MATH  Google Scholar 

  9. Jackson, P. 100 sec. Video. Classic QM 3 axis rotation experiment. https://youtu.be/WKTXNvbkhhI

  10. Bell, J.S.: Bertlmann’s socks and the nature of reality. 1980 address CERN ref TH.2926. Le Jnl. de Physique Colloques 42(C2), 41–61 (1981)

    Google Scholar 

  11. Deepa, S., Senthilkumaran, P.: Helicity dependent diffraction by angular momentum transfer. Sci. Rep. 9, 12491 (2019). https://doi.org/10.1038/s41598-019-48923-6

    Article  ADS  Google Scholar 

  12. Marrucci, L., et al.: Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications IOP. J. Opt. 13, 064001 (2011)

    Article  ADS  Google Scholar 

  13. Einstein, A.: Relativity and the problem of space, Appdx. V. In: Relativity, The Special and the General Theory, XVth edn., p. 139. Crown Publishers, New York (1952) ( translation by R.W. Lawson, 1954)

  14. Dirac. P.A.M.: Quotation from; International Symposium on the History of Particle Physics, Fermilab, May 1980. In: Laurie, B., Lillian, H. (eds.) Proceedings, The Birth of Particle Physics, p. 432. Cambridge University Press (1983) (Origin of Quantum Field Theory, pp. 39–55, 1980)

  15. Aspect, A.: Trois tests expérimentaux des inégalités de Bell par mesure de corrélation de polarisation de photons. Ph.D. Thesis, thèse d’Etat, Universite de Paris-Sud, Centre D'Orsay. pp. 265–267 (1983)

  16. Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A.: Violation of Bell’s inequality in strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  17. Weinstein, S.: Nonlocality without nonlocality. Found. Phys. 39, 921 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. Jackson, P.A.: Ridiculous simplicity. FQXi. https://fqxi.org/community/forum/topic/3012 (2018)

  19. Traill, D.A.: A Fundamental Misunderstanding. FQXi. https://www.researchgate.net/publication/327260788_A_Fundamental_Misunderstanding (2018) Accessed 15 May 2021

  20. Smith, D.H., Gillet, G., de Almeida, M.P.: Conclusive quantum steering with superconducting transition-edge sensors. Nat. Commun. 3, 2–4 (2012)

    Article  Google Scholar 

  21. Mekhitarian, V.: Equations of Relativistic and Quantum Mechanics (without Spin), Quantum Mechanics, Paul Bracken. IntechOpen, London (2020)

    Google Scholar 

  22. Nikolic, H.: Quantum mechanics: myths and facts. Found. Phys. 37, 1563–1611 (2007)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Jackson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson, P.A., Minkowski, J.S. The Measurement Problem, an Ontological Solution. Found Phys 51, 77 (2021). https://doi.org/10.1007/s10701-021-00475-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-021-00475-4

Keywords

Navigation