Skip to main content
Log in

Increase in Storm Activity in the Kara Sea from 1979 to 2019: Numerical Simulation Data

  • OCEANOLOGY
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

Wind wave modeling (WAVEWATCH III model) is used to analyze the storm activity in the Kara Sea for the period from 1979 to 2019. The NCEP/CFSR/CFSv2 reanalysis data used as forcing. Simulations realized on the nonstructural grid with a resolution of 700 m to 10 km. The quality of wind wave simulation is assessed through a comparison with direct measurements and satellite data. The storm wave frequencies are analyzed separately for each year. It is found that storms with waves more than 3 m are observed on average about 30 times a year. The frequency of storms with waves more than 3–5 m increased twofold from 1979 to 2019. The increase in the storm frequency is due to a decrease in the sea ice cover extent. Analysis of the seasonal variations in storm activity shows that the largest amount of storms is observed from July to December. A strong positive trend in the frequency of storms is observed from October to December. Storms in January, February, and March have been observed since 2005 due to the absence of ice, which contributes significantly to the ultimate increase in the storm frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Stopa, F. Ardhuin, and F. Girard-Ardhuin, Cryosphere 10 (4), 1605–1629 (2016).

    Article  Google Scholar 

  2. Q. Liu, A. Babanin, S. Zieger, I. Young, and C. Guan, J. Clim. 29 (22), 7957–7975 (2016).

    Article  Google Scholar 

  3. T. Waseda, A. Webb, K. Sato, J. Inoue, A. Kohout, and B. Penrose, Sci. Rep. 8 (1) (2018). https://doi.org/10.1038/s41598-018-22500-9

  4. C. Duan, S. Dong, and Z. Wang, Reg. Stud. Mar. Sci., Art. 100719 (2019).

  5. A. Semedo, K. Sušelj, A. Rutgersson, and A. Sterl, J. Clim. 24 (5), 1461–1479 (2011).

    Article  Google Scholar 

  6. M. Serreze and J. Stroeve, Philos. Trans. R. Soc. London A 373, 20140159 (2015). https://doi.org/10.1098/rsta.2014.0159

    Article  Google Scholar 

  7. V. Ivanov and I. Repina, Izv., Atmos. Ocean. Phys. 54, 65–72 (2018).

    Article  Google Scholar 

  8. N. Tilinina, S. Gulev, and D. Bromwich, Geophys. Res. Lett. 43, 1766–1772 (2014).

    Article  Google Scholar 

  9. J. E. Smirnova, P. A. Golubkin, L. P. Bobylev, E. V. Zabolotskikh, and B. Chapron, Geophys. Res. Lett. 42 (13), 5603–5609 (2015).

    Article  Google Scholar 

  10. G. Surkova, L. Sokolova, and A. Chichev, Vestn. Mosk. Univ., Ser. 5: Geogr., No. 5, 53–58 (2015).

  11. I. Young and A. Ribal, Science 364, 548–552 (2019). https://doi.org/10.1126/science.aav9527

    Article  Google Scholar 

  12. Wind and Wave Conditions of Japan and Kara Seas. Handbook, Ed. by L. I. Lopatukhin, A. V. Bukhanovskii, and E. S. Chernysheva (Russian Maritime Register of Shipping, St. Petersburg, 2009) [in Russian].

    Google Scholar 

  13. N. A. Diansky, V. V. Fomin, I. M. Kabatchenko, and V. M. Gruzinov, Arct.: Ecol. Econ., No. 1 (13), 57–73 (2014).

  14. A. Kislov and T. Matveeva, Atmos. Clim. Sci. 10, 339–356 (2020).

    Google Scholar 

  15. H. Tolman, The WAVEWATCH III Development Group User Manual and System Documentation of WAVEWATCH III Version 6.07 (2019), Tech. Note 333, NOAA/NWS/NCEP/MMAB. http://www.researchgate.net/publication/336069899_User_manual_and_system_documentation_of_WAVEWATCH_III_R_version_607. Accessed Dec. 18, 2020.

  16. S. Myslenkov, A. Medvedeva, V. Arkhipkin, et al., Geogr., Environ., Sustainability 11 (1), 93–112 (2018).

    Article  Google Scholar 

  17. S. A. Myslenkov, M. Yu. Markina, V. S. Arkhipkin, and N. D. Tilinina, Vestn. Mosk. Univ., Ser. 5: Geogr., No. 2, 45–54 (2019).

  18. S. Myslenkov, V. Platonov, A. Kislov, K. Silvestrova, and I. Medvedev, Water 13, 648 (2021). https://doi.org/10.3390/w13050648

    Article  Google Scholar 

  19. Hydrometeorological and Ice Conditions of Russian Arctic Seas. Atlas (Neft. Khoz., Moscow, 2015) [in Russian].

  20. L. Lopatoukhin, V. Rozhkov, V. Ryabinin, V. Swail, A. Boukhanovsky, and A. Degtyarev, JCOMM Tech. Rep. No. 9, WMO/TD-No. 1041 (2000).

Download references

Funding

The work of S.A. Myslenkov and V.S. Platonov was supported by the Russian Foundation for Basic Research (project no. 18-05-60147). The work of K.P. Silvestrova was carried out under Government Program no. 0128-2021-0002. The work of S.A. Dobrolyubov was supported by the Interdisciplinary Scientific and Educational School of Moscow State University “The Future of the Planet and Global Environmental Changes.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Myslenkov.

Additional information

Translated by B. Shubik

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myslenkov, S.A., Platonov, V.S., Silvestrova, K.P. et al. Increase in Storm Activity in the Kara Sea from 1979 to 2019: Numerical Simulation Data. Dokl. Earth Sc. 498, 502–508 (2021). https://doi.org/10.1134/S1028334X2106012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X2106012X

Keywords:

Navigation