Skip to main content

Advertisement

Log in

Habitat edges alter arthropod community composition

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Historically, habitat edges were thought to increase diversity by combining communities from two habitats, but empirical results are mixed. Variation in edge responses may be driven by lumping specialists and generalists with divergent responses.

Objectives

We examined arthropod communities associated with a habitat edge in an intertidal salt marsh in New Jersey. We predicted that herbivores, largely specialists, would decline along the habitat edge due to their failure to expand across the boundary, and specialist natural enemies should track prey. Generalists should be less impacted by the edge if they use resources from both sides. Thus, habitat edges should affect species composition more than species diversity.

Methods

We studied the edge responses of 115 arthropod species to the habitat edge formed between Spartina patens (SP) and Spartina alterniflora (SA) throughout the growing season.

Results

We found that the edge between SA and SP affected the abundance and composition of the associated arthropod community, but not species richness. Composition of herbivores, epigeic feeders, specialist natural enemies, and generalist predators shifted not only between SA and SP interiors, but also the edges. Compositional shifts were driven by dietary or habitat specialists.

Conclusions

We found that edges change community composition via divergent responses by species with different resource requirements. This change in composition is not between two disparate habitat types but two congeneric grass species. Our results demonstrate that biodiversity losses due to edge effects associated with habitat fragmentation will not be random but will be driven by specialization and resource use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alignier A, Alard D, Chevalier R, Corcket E (2014) Can contrast between forest and adjacent open habitat explain the edge effects on plant diversity? Acta Bot Gallica 161(3):253–259

    Article  Google Scholar 

  • Bagchi R, Brown LM, Elphick CS, Wagner DL, Singer MS (2018) Anthropogenic fragmentation of landscapes: mechanisms for eroding the specificity of plant-herbivore interactions. Oecologia 187:521–533

    Article  PubMed  Google Scholar 

  • Blitzer EJ, Dormann CF, Holzschuh A, Klein A-M, Rand TA, Tscharntke T (2012) Spillover of functionally important organisms between managed and natural habitats. Agr Ecosyst Environ 146:34–43

    Article  Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, Ltd., Plymouth

    Google Scholar 

  • Cronin JT (2009) Habitat edges, within-patch dispersion of hosts, and parasitoid oviposition behavior. Ecology 90:196–207

    Article  PubMed  Google Scholar 

  • Cronin JT, Haynes KJ (2004) An invasive plant promotes unstable host-parasitoid dynamics. Ecology 85(10):2772–2782

    Article  Google Scholar 

  • De Carvalho Guimarães CD, Viana JPR, Cornelissen T (2014) A meta-analysis of the effects of fragmentation on herbivorous insects. Environ Entomol 43:537–545

    Article  PubMed  Google Scholar 

  • Denno RF (1977) Comparison of the assemblages of sap-feeding insects (Homoptera-Hemiptera) inhabiting two structurally different salt marsh grasses in the genus Spartina. Environ Entomol 6:359–372

    Article  Google Scholar 

  • Denno RF (1980) Ecotope differentiation in a guild of sap-feeding insects on the salt marsh grass, Spartina patens. Ecology 61:702–714

    Article  Google Scholar 

  • Denno RF, Roderick GK, Peterson MA, Huberty AF, Dobel HG, Eubanks MD, Losey JE, Langellotto GA (1996) Habitat persistence underlies intraspecific variation in the dispersal strategies of planthoppers. Ecol Monogr 66(4):389–408

    Article  Google Scholar 

  • Döbel HG, Denno RF (1994) Predator planthopper interactions. In: Denno RF, Perfect TJ (eds) Planthoppers: their ecology and management. Chapman and Hall, New York, pp 325–399

    Chapter  Google Scholar 

  • Döbel HG, Denno RF, Coddington JA (1990) Spider (Aranae) community structure in an intertidal salt marsh: effects of vegetation structure and tidal flooding. Environ Entomol 19:1356–1370

    Article  Google Scholar 

  • Donnelly JP, Bertness MD (2001) Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proc Natl Acad Sci 98(25):14218–14223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Ewers RM, Didham RK (2008) Pervasive impact of large-scale edge effects on a beetle community. Proc Natl Acad Sci 105(14):5426–5429

    Article  PubMed  PubMed Central  Google Scholar 

  • Fagan WF, Cantrell RS, Cosner C (1999) How habitat edges change species interactions. Am Nat 153:165–182

    Article  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Faith DP, Minchin PR, Belbin L (1987) Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69:57–68

    Article  Google Scholar 

  • Ferrenberg SM, Denno RF (2003) Competition as a factor underlying the abundance of an uncommon phytophagous insect, the salt marsh planthopper Delphacodes penedetecta. Ecological Entomology 28:58–66

    Article  Google Scholar 

  • Finke DL, Denno RF (2002) Intraguild predation diminished in complex-structured vegetation: implications for prey suppression. Ecology 83:643–652

    Article  Google Scholar 

  • Finke DL, Denno RF (2004) Predator diversity dampens trophic cascades. Nature 429:407–410

    Article  PubMed  CAS  Google Scholar 

  • Fletcher RJ, Ries L, Battin J, Chalfoun AD (2007) The role of habitat area and edge in fragmented landscapes: definitively distinct or inevitably intertwined? Can J Zool 85:1017–1030

    Google Scholar 

  • Forister ML, Novotny V, Panorska AK, Bahe L, Basset Y, Butterill PT, Cizek L, Coley PD, Dem F, Diniz IR, Drozd P (2015) The global distribution of diet breadth in insect herbivores. Proc Natl Acad Sci 112:442–447

    Article  PubMed  CAS  Google Scholar 

  • Frost C, Didham RK, Rand TA, Peralta G, Tylianakis JM (2015) Community-level net spillover of natural enemies from managed to natural forest. Ecology 96:193–202

    Article  PubMed  Google Scholar 

  • Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19:207–233

    Article  Google Scholar 

  • Gallé R, Geppert C, Földesi R, Tscharntke T, Batáry P (2020) Arthropod functional traits shaped by landscape-scale field size, local agri-environment schemes and edge effects. Basic Appl Ecol 48:102–111

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Gratton C, Denno RF (2003) Inter-year carryover effects of a nutrient pulse on Spartina plants, herbivores, and natural enemies. Ecology 84:2692–2707

    Article  Google Scholar 

  • Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, Stenmans W, Muller A, Sumser H, Horren T, Goulson D, de Kroon H (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12:e0185809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals. Am Nat 93(870):145–159

    Article  Google Scholar 

  • Krishnadas M, Kumar AN, Comita LS (2019) Edge effects reduce a-diversity but not b-diversity during community assembly in a human-modified tropical forest. Ecol Appl 29(8):e01996

    Article  PubMed  Google Scholar 

  • Langellotto GA, Denno RF (2004) Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139:1–10

    Article  PubMed  Google Scholar 

  • Leopold A (1933) Game management. Scribners, New York

    Google Scholar 

  • McCann KS, Rooney N (2009) The more food webs change, the more they stay the same. Philos Trans R Soc B 364:1789–1801

    Article  Google Scholar 

  • Minchin PR (2001) DECODA (database for ecological community data), version 3.0. Australian National University, Australia

    Google Scholar 

  • Mooney KA, Pratt RT, Singer MS (2012) The tri-trophic interactions hypothesis: interactive effects of host plant quality, diet breadth and natural enemies on herbivores. PLoS ONE 7(4):e34403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy SM, Battocletti AH, Tinghitella RM, Wimp GM, Ries L (2016) Complex community and evolutionary responses to habitat fragmentation and habitat edges: what can we learn from insect science? Curr Opin Insect Sci 14:61–65

    Article  PubMed  Google Scholar 

  • Murphy SM, Lewis D, Wimp GM (2020) Predator population size structure alters consumption of prey from epigeic and grazing food webs. Oecologia 192:91–799

    Article  Google Scholar 

  • Nguyen HDD, Nansen C (2018) Edge-biased distributions of insects. A review. Agron Sustain Dev 38:11

    Article  Google Scholar 

  • Nyman JA, DeLaune RD, Roberts HH, Patrick WH (1993) Relationship between vegetation and soil formation in a rapidly submerging coastal marsh. Mar Ecol Prog Ser 96(3):269–279

    Article  Google Scholar 

  • Odum EP (1953) Fundamentals of ecology. WB Saunders, London, p 384

    Google Scholar 

  • Peyras M, Vespa NI, Bellocq MI, Zurita GA (2013) Quantifying edge effects: the role of habitat contrast and species specialization. J Insect Conserv 17:807–820

    Article  Google Scholar 

  • Pfeifer M, Lefebvre V, Peres CA, Banks-Leite C, Wearn OR, Marsh CJ, Butchart SHM, Arroyo-Rodríguez V, Barlow J, Cerezo A, Cisneros L (2017) Creation of forest edges has a global impact on forest vertebrates. Nature 551:187–191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

  • Rand TA, Lauda SM (2006) Spillover of agriculturally subsidized predators as a potential threat to native insect herbivores in fragmented landscapes. Conserv Biol 20:1720–1729

    Article  PubMed  Google Scholar 

  • Rand TA, Tscharntke T (2007) Contrasting effects of natural habitat loss on generalist and specialist aphid natural enemies. Oikos 116:1353–1362

    Article  Google Scholar 

  • Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9:603–614

    Article  PubMed  Google Scholar 

  • Ries L, Sisk TD (2004) A predictive model of edge effects. Ecology 85:2917–2926

    Article  Google Scholar 

  • Ries L, Sisk TD (2008) Edge effects are predicted by a simple model in a complex landscape. Oecologia 156:75–86

    Article  PubMed  Google Scholar 

  • Ries L, Fletcher RJ, Battin J, Sisk TD (2004) Ecological responses to habitat edges: Mechanisms, models, and variability explained. Annu Rev Ecol Evol Syst 35:491–522

    Article  Google Scholar 

  • Ries L, Murphy SM, Wimp GM, Fletcher RJ (2017) Closing persistent gaps in knowledge about edge ecology. Curr Landsc Ecol Rep 2:30–41

    Article  Google Scholar 

  • Rooney N, McCann K, Gellner G, Moore JC (2006) Structural asymmetry and the stability of diverse food webs. Nature 442:265–269

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Cons 232:8–27

    Article  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5(1):18–32

    Article  Google Scholar 

  • Sullivan MJ, Currin CA (2000) Community structure and functional dynamics of benthic microalgae in salt marshes. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Kluwer Academic Publishers, Dotrecht, pp 81–106

    Google Scholar 

  • Thomas CD, Jones TH, Hartley SE (2019) “Insectageddon”: a call for more robust data and rigorous analyses. Glob Change Biol 25:1891–1892

    Article  Google Scholar 

  • Van Klink R, Bowler DE, Gongalsky KB, Swengel AB, Gentile A, Chase JM (2020) Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368:417–420

    Article  PubMed  CAS  Google Scholar 

  • Vidal MC, Murphy SM (2018) Bottom-up vs. top-down effects on terrestrial insect herbivores: a meta-analysis. Ecol Lett 21:138–150

    Article  PubMed  Google Scholar 

  • Warwick RM, Clarke KR, Suharsono, (1990) A statistical analysis of coral community responses to the 1982–1983 El Nino in the Thousand Islands, Indonesia. Coral Reefs 8:171–179

    Article  Google Scholar 

  • Willig MR, Woolbright L, Presley SJ, Schowalter TD, Waide RB, Scalley TH, Zimmerman JK, González G, Lugo, AE (2019) Populations are not declining and food webs are not collapsing at the Luquillo experimental forest. Proc Natl Acad Sci 116(25):12143–12144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wimp GM, Murphy SM, Lewis D, Ries L (2011) Do edge responses cascade up or down a multi-trophic food web? Ecol Lett 14:863–870

    Article  PubMed  Google Scholar 

  • Wimp GM, Murphy SM, Lewis D, Douglas MR, Ambikapathi R, Van-Tull LA, Gratton C, Denno RF (2013) Predator hunting mode influences patterns of prey use from grazing and epigeic food webs. Oecologia 171:505–515

    Article  PubMed  Google Scholar 

  • Wimp GM, Ries L, Lewis D, Murphy SM (2019) Habitat edge responses of generalist predators is predicted by prey and structural resources. Ecology 100:e02662

    Article  PubMed  Google Scholar 

  • Wirth R, Meyer ST, Leal IR, Tabarelli M (2008) Plant herbivore interactions at the forest edge. Progress in botany. Springer, New York, pp 423–448

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank M. Brabson, M. Douglas, B. Crawford, D. McCaskill, E. Parilla, R. Pearson, and L. Power for help with field/lab work. K. Able at the Rutgers University Marine Station facilitated research at the NJ field site. We wish to thank the following systematists for genera and species identifications: V. Behan-Pelletier, M. Buffington, J. Davidson, M. Gates, E. Grissell, and M. Yoder. This research was supported by the National Geographic Society (Award #8496-08 to GMW) and the National Science Foundation (NSF-DEB 1026067 to GMW; NSF-DEB 1026000 to SMM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gina M. Wimp.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1782 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wimp, G.M., Murphy, S.M. Habitat edges alter arthropod community composition. Landscape Ecol 36, 2849–2861 (2021). https://doi.org/10.1007/s10980-021-01288-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-021-01288-6

Keywords

Navigation