Skip to main content
Log in

Dynamic Response of Stiffened Bridge Decks Subjected to Moving Loads

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Background

Dynamic analysis of structures under moving load excitation has been one of the most critical challenges for engineers during the last few years. The vast applications of this type of loading in many fields of the industry have intensified the importance of evaluating the dynamic response of vibrant structures under moving loads.

Purpose

This paper investigates the dynamic response of stiffened bridge decks subjected to moving loads for various constant velocities. The plates’ strength is improved by the placement of the stiffeners either concentrically or eccentrically. The stiffeners’ orientation, size, and shape play an important role in strengthening the plates, keeping the structure's weight low. Also, the number of loads and load traversing paths significantly affect the plate's response behaviour. Hence, an attempt has been made to present a parametric study for the dynamic response characteristics of stiffened bridge decks under single and multiple moving loads considering all the aforementioned parameters.

Methods

An in-house finite element MATLAB code is developed for the dynamic response study of the stiffened bridge decks. The plate and stiffener elements’ stiffness and mass matrices have been obtained separately and assembled to form the entire structure’s global matrices. Newmark integration method is used for computing the displacement, velocity, and acceleration for each time step. Some example results have been verified with previously published results and the FEAST (Finite Element Analysis of STructures) software to show the method’s efficacy.

Results

The frequency and the dynamic deflection results of bridge decks with various eccentrically and concentrically attached stiffeners are reported. The dynamic responses under single and multiple loads moving with different constant velocities are also addressed. The dynamic deflection results at various points of the bridge deck and the deflections due to the load moving in an arbitrary path are also assessed.

Conclusions

The attachment of I-beam stiffeners makes the bridge deck stiffer and depicts higher frequencies and lesser deflections than the attachment of T-beam or R-beam type stiffeners. The central deflection of the stiffened bridge deck is directly proportional to the distance traversed by the load. The maximum deflection value increases with an increment of dimension and load velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Harik IE, Guo M (1993) Finite element analysis of eccentrically stiffened plates in free vibration. Comput Struct 49(6):1007–1015

    Article  Google Scholar 

  2. Liew KM, Xiang Y, Kitipornchai S, Lim MK (1994) Vibration of rectangular Mindlin plates with intermediate stiffeners. J Vib Acoust 116(4):529–535

    Article  Google Scholar 

  3. Chen CJ, Liu W, Chern SM (1994) Vibration analysis of stiffened plates. Comput Struct 50(4):471–480

    Article  Google Scholar 

  4. Barik M, Mukhopadhyay M (1998) Finite element free flexural vibration analysis of arbitrary plates. Finite Elem Anal Des 29(2):137–151

    Article  Google Scholar 

  5. Barik M, Mukhopadhyay M (1999) Free flexural vibration analysis of arbitrary plates with arbitrary stiffeners. J Vib Control 5(5):667–683

    Article  Google Scholar 

  6. Barik M, Mukhopadhyay M (2002) A new stiffened plate element for the analysis of arbitrary plates. Thin Walled Struct 40(7–8):625–639

    Article  Google Scholar 

  7. Ahmad N, Kapania RK (2016) Free vibration analysis of integrally stiffened plates with plate-strip stiffeners. AIAA J 54(3):1107–1119

    Article  Google Scholar 

  8. Nayak AN, Satpathy L, Tripathy PK (2018) Free vibration characteristics of stiffened plates. Int J Adv Struct Eng 10(2):153–167

    Article  Google Scholar 

  9. Yang YB, Yang JP (2018) State-of-the-art review on modal identification and damage detection of bridges by moving test vehicles. Int J Struct Stab Dyn. https://doi.org/10.1142/S0219455418500256

    Article  Google Scholar 

  10. Yang JP, Chen BH (2018) Two-mass vehicle model for extracting bridge frequencies. Int J Struct Stab Dyn. https://doi.org/10.1142/s0219455418500566

    Article  MathSciNet  Google Scholar 

  11. Yang YB, Wang ZL, Shi K, Xu H, Wu YT (2020) State-of-the-art of the vehicle-based methods for detecting the various properties of highway bridges and railway tracks. Int J Struct Stab Dyn 20:13. https://doi.org/10.1142/S0219455420410047

    Article  Google Scholar 

  12. Yang YB, Yang JP, Zhang B, Wu Y (2019) Vehicle scanning method for bridges. Wiley Publisher, Hoboken (ISBN: 978-1-119-53958-2)

    Book  Google Scholar 

  13. Yang JP, Sun JY (2020) Pitching effect of a three-mass vehicle model for analyzing vehicle-bridge interaction. Eng Struct. https://doi.org/10.1016/j.engstruct.2020.111248

    Article  Google Scholar 

  14. Yang JP, Lee WC (2018) Damping effect of a passing vehicle for indirectly measuring bridge frequencies by EMD technique. Int J Struct Stab Dyn. https://doi.org/10.1142/S0219455418500086

    Article  Google Scholar 

  15. Sahoo PR, Barik M (2020) Free vibration analysis of stiffened plates. J Vib Eng Technol 8(6):869–882

    Article  Google Scholar 

  16. Sahoo PR, Barik M (2020) A numerical investigation on the dynamic response of stiffened plated structures under moving loads. Structures 28:1675–1686

    Article  Google Scholar 

  17. Sahoo PR, Barik M (2021) Free vibration analysis of stiffened curved plates. J Vib Eng Technol. https://doi.org/10.1007/s42417-021-00284-z

    Article  Google Scholar 

  18. Mishra BP, Barik M (2021) Free flexural vibration of thin stiffened plates using NURBS-augmented finite element method. Structures 33:1620–1632

    Article  Google Scholar 

  19. Wilson EN, Tsirk A (1967) Dynamic behavior of rectangular plates and cylindrical shells. National Aeronautics and Space Administration Report No. NGR-33-016-067

  20. Wu JJ, Lee ML, Lai TS (1987) The dynamic analysis of a flat plate under a moving load by the finite element method. Int J Numer Eng Methods Eng 24:743–762

    Article  Google Scholar 

  21. Raske TF, Schlack AL (1967) Dynamic response of plates due to moving loads. J Acoust Soc Am 42(3):625–635

    Article  Google Scholar 

  22. Dobyns AL (1981) Analysis of simply-supported orthotropic plates subject to static and dynamic loads. AIAA J 19(5):642–650

    Article  Google Scholar 

  23. Ratzlaff KP, Kennedy DJL (1985) Analysis of continuous steel plates subjected to uniform transverse loads. Can J Civ Eng 12(3):685–699

    Article  Google Scholar 

  24. Ratzlaff KP, Kennedy DJL (1985) Behaviour and ultimate strength of continuous steel plates subjected to uniform transverse loads. Can J Civ Eng 13(1):76–85

    Article  Google Scholar 

  25. Taheri MR, Ting EC (1989) Dynamic response of plate to moving loads: structural impedance method. Comput Struct 33(6):1379–1393

    Article  Google Scholar 

  26. Taheri MR, Ting EC (1990) Dynamic response of plates to moving loads: Finite element method. Comput Struct 34(3):509–521

    Article  Google Scholar 

  27. Humar JL, Kashif AH (1993) Dynamic response of bridges under travelling loads. Can J Civ Eng 20(2):287–298

    Article  Google Scholar 

  28. Humar JL, Kashif AH (1995) Dynamic response analysis of slab-type bridges. J Struct Eng 121(1):48–62

    Article  Google Scholar 

  29. Henchi K, Fafard M, Dhatt G, Talbot M (1997) Dynamic behaviour of multi-span beams under moving loads. J Sound Vib 199(1):33–50

    Article  Google Scholar 

  30. Takabatake H (1998) Dynamic analysis of rectangular plates with stepped thickness subjected to moving loads including additional mass. J Sound Vib 213(5):829–842

    Article  Google Scholar 

  31. Wu JJ, Whittaker AR, Cartmell MP (2000) The use of finite element techniques for calculating the dynamic response of structures to moving loads. Comput Struct 78(6):789–799

    Article  Google Scholar 

  32. Sun L (2001) Dynamic displacement response of beam type structures to moving line loads. Int J Solids Struct 38(48–49):8869–8878

    Article  Google Scholar 

  33. Wu JJ (2005) Dynamic analysis of a rectangular plate under a moving line load using scale beams and scaling laws. Comput Struct 83:1646–1658

    Article  Google Scholar 

  34. Song Q, Shi J, Liu Z, Wan Y (2016) Dynamic analysis of rectangular thin plates of arbitrary boundary conditions under moving loads. Int J Mech Sci 117:16–29

    Article  Google Scholar 

  35. Shirmohammadi F, Bahrami S, Saadatpour MM (2017) Dynamic response of rectangular plate subjected to moving loads using spectral finite strip method. Asian J Civ Eng 18(5):703–718

    Google Scholar 

  36. Esmaeilzadeh M, Kadkhodayan M (2019) Dynamic analysis of stiffened bi-directional functionally graded plates with porosities under a moving load by dynamic relaxation method with kinetic damping. Aerosp Sci Technol. https://doi.org/10.1016/j.ast.2019.105333

    Article  Google Scholar 

  37. Yang DS, Wang CM, Pan WH (2020) Further insights into moving load problem on inclined beam based on 305 semi-analytical solution. Structures 26:247–256

    Article  Google Scholar 

  38. Mizusawa T, Kajita Y, Naruoka M (1979) Vibration of skew plates by using B-spline functions. J Sound Vib 62(2):301–308

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Ranjan Sahoo.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The torsional stiffness matrix is given by:

$$\begin{aligned} \begin{Bmatrix} m_{sxi} \\ m_{sxk} \end{Bmatrix}= \dfrac{G_{sx}J_x}{a}\begin{bmatrix} 1 &{} -1 \\ -1 &{} 1 \end{bmatrix}\begin{Bmatrix} \theta _{sxi} \\ \theta _{sxk} \end{Bmatrix}. \end{aligned}$$

The stiffness matrix is given by

$$\begin{aligned}{}[k]_s=\begin{bmatrix} \dfrac{E_sA_x}{a} &{} 0 &{} 0 &{} 0 &{} 0 &{} -\dfrac{E_sA_x}{a} &{} 0 &{} 0 &{} 0 &{} 0 \\ &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ &{} &{} K3 &{} 0 &{} K4 &{} 0 &{} 0 &{} -K3 &{} 0 &{} K4 \\ &{} &{} &{} \dfrac{G_{sx}J_x}{a} &{} 0 &{} 0 &{} 0 &{} 0 &{} -\dfrac{G_{sx}J_x}{a} &{} 0 \\ &{} &{} &{} &{} K1 &{} 0 &{} 0 &{} -K4 &{} 0 &{} K2 \\ &{} &{} &{} &{} &{} \dfrac{E_sA_x}{a} &{} 0 &{} 0 &{} 0 &{} 0 \\ &{} &{} &{} \mathrm{symm.} &{} &{} &{} 0 &{} 0 &{} 0 &{} 0 \\ &{} &{} &{} &{} &{} &{} &{} K3 &{} 0 &{} -K4 \\ &{} &{} &{} &{} &{} &{} &{} &{} \dfrac{G_{sx}J_x}{a} &{} 0\\ &{} &{} &{} &{} &{} &{} &{} &{} &{} K1 \end{bmatrix}, \end{aligned}$$

where

$$\begin{aligned} K1&=\dfrac{4E_sI_{ox}}{a}-\dfrac{e_c^2 E_s A_x}{a} \\ K2&=\dfrac{2E_sI_{ox}}{a}+\dfrac{e_c^2 E_s A_x}{a} \\ K3&=\dfrac{12E_sI_{ox}}{a^3}\\ K4&=\dfrac{6E_sI_{ox}}{a^2}\\ I_{ox}&=I_x+A_xe_c^2. \end{aligned}$$

The mass matrix is given by

$$\begin{aligned}{}[m]_s=\rho _s\;A_x\;a \begin{bmatrix} \dfrac{1}{J_x} &{} 0 &{} \dfrac{e_c}{2a} &{} 0 &{} \dfrac{e_c}{4} &{} \dfrac{1}{6} &{} 0 &{} -\dfrac{e_c}{2a} &{} 0 &{} \dfrac{e_c}{4} \\ &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ &{} &{} S1 &{} 0 &{} S2 &{} \dfrac{e_c}{2a} &{} 0 &{} S5 &{} 0 &{} -S4 \\ &{} &{} &{} S7 &{} 0 &{} 0 &{} 0 &{} 0 &{} \dfrac{S7}{2} &{} 0 \\ &{} &{} &{} &{} S3 &{} \dfrac{e_c}{4} &{} 0 &{} S4 &{} 0 &{} S6 \\ &{} &{} &{} &{} &{} \dfrac{1}{J_x} &{} 0 &{} 0 &{} 0 &{} \dfrac{e_c}{4} \\ &{} &{} &{} &{} &{} &{} 0 &{} 0 &{} 0 &{} 0 \\ &{} &{} symm. &{} &{} &{} &{} &{} S1 &{} 0 &{} -S2 \\ &{} &{} &{} &{} &{} &{} &{} &{} S7 &{} 0 \\ &{} &{} &{} &{} &{} &{} &{} &{} &{} \, S3 \end{bmatrix}, \end{aligned}$$

where

$$\begin{aligned} S1&=\dfrac{13}{35}+\dfrac{6}{5}\dfrac{I_{ox}}{A_xa^2} \\ S2&=\dfrac{11a}{210}+\dfrac{I_{ox}}{10A_xa}+\dfrac{e_c^2}{2a} \\ S3&=\dfrac{a^2}{105}+\dfrac{2}{15}\dfrac{I_{ox}}{A_x}+\dfrac{e_c^2 }{6} \\ S4&=\dfrac{13a}{420}-\dfrac{I_{ox}}{10A_xa}-\dfrac{e_c^2}{2a}\\ S5&=\dfrac{9}{70}-\dfrac{6}{5}\dfrac{I_{ox}}{A_xa^2} \\ S6&=-\dfrac{a^2}{140}-\dfrac{I_{ox}}{30A_x}+\frac{e_c^2}{3}\\ S7&= \dfrac{J_x}{3A_x}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, P.R., Barik, M. Dynamic Response of Stiffened Bridge Decks Subjected to Moving Loads. J. Vib. Eng. Technol. 9, 1983–1999 (2021). https://doi.org/10.1007/s42417-021-00344-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-021-00344-4

Keywords

Navigation