Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) May 18, 2021

Experimental study on modeling of Pu sorption onto quartz

  • Ko Hemmi EMAIL logo , Andrew Walker and Tetsuji Yamaguchi
From the journal Radiochimica Acta

Abstract

Plutonium(IV) sorption onto quartz in carbonate solutions was systematically investigated under anaerobic conditions to analyze the sorption behaviors of Pu(IV) with a non-electrostatic model (NEM). Pu(IV) sorption data was obtained from batch sorption experiments as a function of pH and carbonate concentration. The Pu(IV) sorption onto quartz showed similar tendencies to Th(IV), which is considered to be chemically analogous as a tetravalent actinoid. The distribution coefficient, Kd, of Pu(IV) onto quartz showed inverse proportionality to the square of the total carbonate concentration under the investigated pH conditions of 8–11. The modeling study, however, revealed a Th(IV) sorption model, which is ≡SOTh(OH)4 and ≡SOThOH(CO3)22−, could not be applied to simulate the Pu(IV) sorption onto quartz. It was inferred that the electrostatic repulsion between negatively charged ligands limited the formation of ≡SOM(OH)4 and ≡SOMOH(CO3)22− for Pu(IV) with smaller ionic radii than Th(IV). The Pu(IV) sorption model was developed as ≡SOPu(OH)3 and ≡SOPu(OH)4. In addition, data of Pu(IV) sorption onto muscovite was obtained in order to be compared with data for quartz.


Corresponding author: Ko Hemmi, Japan Atomic Energy Agency, Nuclear Safety Research Center, Tokai, Ibaraki319-1195, Japan, E-mail:

Funding source: Nuclear Regulation Authority

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Part of this research is funded by the Secretariat of the Nuclear Regulation Authority (NRA), Japan.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix

Table A1:

Series-1: results for Pu(IV) sorption onto quartz at initial Pu concentration of 4 × 10−11 M, an ionic strength of 0.5 mol/kg, and the solid to liquid ratio (M/Vi) of 25 g/L.

Total carbonate concentration (M)pHEh (V)Kd (m3/kg)
0.058.54−0.12(5.6 ± 0.1) × 10−2
9.120.32(4.7 ± 0.1) × 10−2
9.520.28(5.4 ± 0.1) × 10−2
9.860.27(8.1 ± 0.2) × 10−2
10.20.24(1.4 ± 0.0) × 10−1
10.80.17(6.1 ± 0.3) × 10−1
0.18.60−0.11(1.1 ± 0.0) × 10−2
9.200.30(1.4 ± 0.0) × 10−2
9.590.26(2.1 ± 0.1) × 10−2
9.750.23(2.1 ± 0.1) × 10−2
9.910.20(2.2 ± 0.1) × 10−2
10.30.16(4.0 ± 0.1) × 10−2
11.0−0.19(2.6 ± 0.1) × 10−1
0.38.61−0.11(8.6 ± 2.6) × 10−4
8.77−0.05(8.4 ± 3.2) × 10−4
9.01−0.11(8.8 ± 3.2) × 10−4
9.09−0.14(3.8 ± 3.1) × 10−4
9.18−0.18(9.3 ± 3.2) × 10−4
9.35−0.22(6.3 ± 3.2) × 10-4
9.50−0.13(1.5 ± 0.3) × 10−3
Table A2:

Series-2: results for Pu(IV) sorption onto quartz at pH 9 and an ionic strength of 1.0 mol/kg. M/Vi is the solid to liquid ratio.

Total carbonate concentration (M)Initial Pu concentration (M)M/Vi (g/L)pHEh (V)Kd (m3/kg)
10−32 × 10−110.258.680.18(2.0 ± 0.1) × 101
10−2.52 × 10−110.258.890.17(9.7 ± 0.3) × 100
10−22 × 10−110.258.960.17(3.2 ± 0.1) × 100
4 × 10−11258.910.16(1.6 ± 0.2) × 100
10−1.52 × 10−110.259.010.15(2.0 ± 0.4) × 10−1
4 × 10−11258.990.14(1.3 ± 0.0) × 10−1
10−14 × 10−11259.190.13(7.6 ± 0.3) × 10−3
10−0.54 × 10−11259.250.13<4.0 × 10−4
Table A3:

Series-3: results for Pu(IV) sorption onto muscovite at initial Pu concentration of 4 × 10−11 M, an ionic strength of 0.5 mol/kg, and the solid to liquid ratio (M/Vi) of 25 g/L.

Total carbonate concentration (M)pHEh (V)Kd (m3/kg)
0.18.530.04(6.5 ± 0.4) × 10−3
9.150.40(5.3 ± 0.5) × 10−3
9.540.34(4.5 ± 0.5) × 10−3
9.720.01(4.8 ± 0.5) × 10−3
9.880.30(5.5 ± 0.5) × 10−3
10.30.18(1.3 ± 0.1) × 10−2
11.0−0.04(2.2 ± 0.1) × 10−1
0.38.590.04(1.4 ± 0.3) × 10−3
9.11−0.03(7.2 ± 4.2) × 10−4
9.500.03(7.5 ± 3.3) × 10−4

References

1. Sahai, N., Rosso, K. M. Computational molecular basis for improved silica surface complexation models. In Interface Science and Technology, Vol. 11, Surface Complexation Modelling; Lützenkirchen, J., Ed.; Elsevier: Amsterdam, Netherlands, 2006; p. 359.10.1016/S1573-4285(06)80057-8Search in Google Scholar

2. Japan Nuclear Cycle Development Institute. H12, Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan, Supporting Report 3, Safety Assessment of the Geological Disposal System. JNC-TN1410 2000-004; JAEA: Tokai, Japan, 2000.Search in Google Scholar

3. Runde, W. H. The chemical interactions of actinides in the environment. Los Alamos Sci. 2000, 26, 392.Search in Google Scholar

4. Geckeis, H., Lützenkirchen, J., Polly, R., Rabung, T., Schmidt, M. Mineral–water interface reactions of actinides. Chem. Rev. 2013, 113, 1016. https://doi.org/10.1021/cr300370h.Search in Google Scholar

5. Allard, B. Sorption of actinides in granitic rock. Svensk Kaernbraenslefoersoerjning AB, SKBF-KBS-TR--82-21; Svensk Kaernbraenslefoersoerjning AB: Stockholm, Sweden, 1982.Search in Google Scholar

6. Ticknor, Κ. V. Actinide sorption by fracture-infilling minerals. Radiochim. Acta 1993, 60, 33. https://doi.org/10.1524/ract.1993.60.1.33.Search in Google Scholar

7. Marsac, R., Banik, N. L., Lützenkirchen, J., Buda, R. A., Kratz, J. V., Marquardt, C. M. Modeling plutonium sorption to kaolinite: accounting for redox equilibria and the stability of surface species. Chem. Geol. 2015, 400, 1. https://doi.org/10.1016/j.chemgeo.2015.02.006.Search in Google Scholar

8. Iida, Y., Yamaguchi, T., Tanaka, T., Hemmi, K. Sorption behavior of thorium onto granite and its constituent minerals. J. Nucl. Sci. Technol. 2016, 53, 1573. https://doi.org/10.1080/00223131.2016.1138901.Search in Google Scholar

9. Prikryl, J. D., Jain, A., Turner, D. R., Pabalan, R. T. UraniumVI sorption behavior on silicate mineral mixtures. J. Contam. Hydrol. 2001, 47, 241. https://doi.org/10.1016/s0169-7722(00)00153-4.Search in Google Scholar

10. Pratopo, M. I., Yamaguchi, T., Moriyama, H., Higashi, K. Adsorption of Np (IV) on quartz in carbonate solutions. Radiochim. Acta 1991, 55, 209. https://doi.org/10.1524/ract.1991.55.4.209.Search in Google Scholar

11. Banik, N. L., Buda, R. A., Bürger, S., Kratz, J. V., Trautmann, N. Sorption of tetravalent plutonium and humic substances onto kaolinite. Radiochim. Acta 2007, 95, 569. https://doi.org/10.1524/ract.2007.95.10.569.Search in Google Scholar

12. Brunauer, S., Emmett, P. H., Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309. https://doi.org/10.1021/ja01269a023.Search in Google Scholar

13. NEA Sorption Project Phase III. Thermodynamic Sorption Modeling in Support of Radioactive Waste Disposal Safety Cases; Organization for Economic Co-operation and Development (OECD), Nuclear Energy Agency (NEA) Report No. 6914: Paris, France, 2012.Search in Google Scholar

14. Chakraborty, S., Wolthers, M., Chatterjee, D., Charlet, L. Adsorption of arsenite and arsenate onto muscovite and biotite mica. J. Colloid Interface Sci. 2007, 309, 392. https://doi.org/10.1016/j.jcis.2006.10.014.Search in Google Scholar PubMed

15. Yamaguchi, T., Nakayama, S., Okamoto, H. Effective diffusivity of neptunium and plutonium in granite from Inada, Ibaraki, Japan under anaerobic conditions. Radiochim. Acta 2002, 90, 863. https://doi.org/10.1524/ract.2002.90.12_2002.863.Search in Google Scholar

16. Dyrssen, D., Sillén, L. G. Alkalinity and total carbonate in sea water. A plea for p‐T‐independent data. Tellus 1967, 19, 113. https://doi.org/10.3402/tellusa.v19i1.9755.Search in Google Scholar

17. Parkhurst, D. L., Appelo, C. A. J. Description of Input and Examples for PHREEQC Version 3-A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. U.S. Geological Survey Techniques and Methods, book 6, chap. A43; U.S. Geological Survey: Reston, VA, 2013; p. 497.10.3133/tm6A43Search in Google Scholar

18. Kitamura, A. Update of JAEA-TDB: Update of Thermodynamic Data for Zirconium and those for Isosaccahrinate, Tentative Selection of Thermodynamic Data for ternary M2+-UO22+-CO32− System and Integration with JAEA’s Thermodynamic Database for Geochemical Calculations. JAEA-Data/Code 2018-018; JAEA: Tokai, Japan, 2019.Search in Google Scholar

19. Marsac, R., Banik, N. L., Lützenkirchen, J., Diascorn, A., Bender, K., Marquardt, C. M., Geckeis, H. Sorption and redox speciation of plutonium at the illite surface under highly saline conditions. J. Colloid Interface Sci. 2017, 485, 59. https://doi.org/10.1016/j.jcis.2016.09.013.Search in Google Scholar PubMed

20. Gaona, X., Grenthe, I., Plyasunov, A. V., Runde, W. H., Konings, R. J. M., Moore, E. E., Rao, L., Grambow, B., Smith, A. L. Chemical Thermodynamics Volume 14 – Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium; OECD Publications: Paris, France, 2020.Search in Google Scholar

Received: 2020-07-08
Accepted: 2021-05-01
Published Online: 2021-05-18
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2020-0068/html
Scroll to top button