Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) May 21, 2021

In silico and in vivo study of radio-iodinated nefiracetam as a radiotracer for brain imaging in mice

  • M. H. Sanad , A. B. Farag and S. F. A. Rizvi
From the journal Radiochimica Acta

Abstract

This study presents development and characterization of a radiotracer, [125I]iodonefiracetam ([125I]iodoNEF). Labeling with high yield and radiochemical purity was achieved through the formation of a [125I]iodoNEF radiotracer after investigating many factors like oxidizing agent content (chloramines-T (Ch-T)), substrate amount (Nefiracetam (NEF)), pH of reaction mixture, reaction time and temperature. Nefiracetam (NEF) is known as nootropic agent, acting as N-methyl-d-aspartic acid receptor ligand (NMDA). The radiolabeled compound was stable, and exhibited the logarithm of the partition coefficient (log p) value of [125I]iodonefiracetam as 1.85 (lipophilic). Biodistribution studies in normal mice confirmed the suitability of the [125I]iodoNEF radiotracer as a novel tracer for brain imaging. High uptake of 8.61 ± 0.14 percent injected dose/g organ was observed in mice


Corresponding authors: A. B. Farag, Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt, E-mail: ; and S. F. A. Rizvi,College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, Gansu, P.R. China,

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Shigeki, M., Norifumi, S., Hiroshi, M., Xilong, Z., William, M., Jay, Z. Y., Kohji, F., Toshio, N. Nefiracetam potentiates N-methyl-d-aspartate (NMDA) receptor function via protein kinase C activation and reduces magnesium block of NMDA receptor. Mol. Pharmacol. 2007, 71, 580.10.1124/mol.106.027607Search in Google Scholar PubMed

2. Vertes, A., Nagy, S., Klencsar, Z., Lovas, G. R. Handbook of Nuclear Chemistry, 2nd ed., Vol. 4, Kluwer Academic: Dordrecht, The Netherlands, 2011.10.1007/978-1-4419-0720-2Search in Google Scholar

3. Thomas, D. G., Anderson, R. E., du Boulay, G. H. CT‐guided stereotactic neurosurgery: experience in 24 cases with a new stereotactic system. J. Neurol. Neurosurg. Psychiatry 1984, 47, 9.10.1136/jnnp.47.1.9Search in Google Scholar PubMed PubMed Central

4. Heilbrun, M. P., Sunderl, P. M., McDonald, P. R., Wells, T. H., Cosman, E., Ganz, E. Appl. Neurophysiol. 1987, 50, 143.10.1159/000100700Search in Google Scholar

5. Levivier, M., Massager, N., Wikler, D., Lorenzoni, J., Ruiz, S., Devriendt, D., David, P., Desmedt, F., Simon, S., Van Houtte, P., Brotchi, J., Goldman, S. J. Nucl. Med. 2004, 45, 1146.Search in Google Scholar

6. Sanad, M. H., Farouk, N., Fouzy, A. S. M. Radiocomplexation and bioevaluation of 99mTc-nitrido-piracetam as a model for brain imaging. Radiochim. Acta 2017, 105, 729.10.1515/ract-2016-2714Search in Google Scholar

7. Sanad, M. H., Alhussein, A. I. Preparation and biological evaluation of 99mTc N-histamine as a model for brain imaging: in silico study and preclinical evaluation. Radiochim. Acta 2018, 106, 229.10.1515/ract-2017-2804Search in Google Scholar

8. Amin, A. M., Sanad, M. H., Abd-Elhaliem, S. M. Radiochemical and biological characterization of 99mTc-piracetam for brain imaging. Radiochemistry 2013, 55, 624.10.1134/S1066362213060118Search in Google Scholar

9. Sanad, M. H., Farag, A. B., Dina, H. S. J. Radioiodination and bioevaluation of rolipram as a tracer for brain imaging: in silico study, molecular modeling and gamma scintigraphy. Label Compd. Radiopharm. 2018, 61, 501.10.1002/jlcr.3614Search in Google Scholar PubMed

10. Sanad, M. H., Marzook, E. A., El-Kawy, O. A. Radiochemical and biological characterization of 99mTc-oxiracetam as a model for brain imaging. Radiochemistry 2017, 59, 624.10.1134/S1066362217060011XSearch in Google Scholar

11. Sanad, M. H., Sallam, Kh. M., Dina, H. S. 99mTc-oxiracetam as a potential agent for diagnostic imaging of brain. Radiochemistry 2018, 60, 58.10.1134/S1066362218010101Search in Google Scholar

12. Zhang, J., Wang, X., Jin, C. J. Synthesis and biodistribution of the 99mTc(CO)3-DEDT complex as a potential new radiopharmaceutical for brain imaging. Radioanal. Nucl. Chem. 2007, 272, 91.10.1007/s10967-006-6794-3Search in Google Scholar

13. Satpati, D., Bapat, K., Mukherjee, A., Banerjee, S., Kothari, K., Venkatesh, M. Preparation and bioevaluation of 99mTc-carbonyl complex of 5-hydroxy tryptamine derivative. Appl. Rad. Isot. 2006, 64, 888.10.1016/j.apradiso.2006.03.003Search in Google Scholar PubMed

14. Erfani, M., Hassanzadeh, L., Ebrahimi, S. E. S., Shafiei, M. Synthesis and biological evaluation of 99mTc (CO)3-OH-PP-CS2 for brain receptor imaging Iran. J. Nucl. Med. 2012, 20, 25.Search in Google Scholar

15. Neirinckx, R. D., Canning, L. R., Piper, I. M., David, N., Roger, P., Holmes, R. A., Volkert, W. A., Forster, A. M., Weisner, P. S., Marriott, J. A., Chaplin, S. B. Technetium-99m d,l-HMPAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J. Nucl. Med. 1987, 28, 191.Search in Google Scholar

16. Walovitch, R. C., Hill, T. C., Garrity, S. T., Cheesman, E. H., Burgess, B. A., O’Leary, D. H., Watson, A. D., Ganey, M. V., Morgan, R. A., Williams, S. J. Characterization of Technetium-99m-L,L-ECD for brain perfusion imaging, Part 1: Pharmacology of technetium-99m ECD in nonhuman primates. J. Nucl. Med. 1989, 30, 1892.Search in Google Scholar

17. Anil, U. C., Manojkumar, U. C. J. Chem. Chem. Sci. 2015, 5, 585.Search in Google Scholar

18. Sanad, M. H., Challan, S. B. Radioiodination and biological evaluation of rabeprazole as a peptic ulcer localization radiotracer. Radiochemistry 2017, 59, 307.10.1134/S1066362217030158Search in Google Scholar

19. Sanad, M. H. Labeling of omeprazole with technetium-99m for diagnosis of stomach. Radiochemistry 2013, 55, 605.10.1134/S1066362213060076Search in Google Scholar

20. Sanad, M. H., Talaat, H. M. Radiodiagnosis of peptic ulcer with technetium-99m-labeled esomeprazole. Radiochemistry 2017, 59, 396.10.1134/S1066362217040129Search in Google Scholar

21. Molecular Operating Environment (MOE). 2008.10., Chemical Computing Group Inc.: Montreal, QC, Canada, 2008.Search in Google Scholar

22. Naïm, M., Bhat, S., Rankin, K. N., Dennis, S., Chowdhury, S. F., Siddiqi, I., Drabik, P., Sulea, T., Bayly, C. L., Jakalian, A., Purisima, E. O. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space. J. Chem. Inf. Model. 2007, 47, 122.10.1021/ci600406vSearch in Google Scholar PubMed

23. Paul, L. Protonate3D: assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins 2009, 75, 187.10.1002/prot.22234Search in Google Scholar PubMed PubMed Central

24. Abolfazl, H., Mohammad, A. K., Masoumeh, H., Mahmoud, T. A. A simple method for iodination of heterocyclic compounds using HIO4/NaCl/silica gel/H2SO4 in water. Monatsh. Chem. 2012, 143, 619.10.1007/s00706-011-0611-6Search in Google Scholar

25. Jin, J., Watabe, S., Yamamoto, T. Nefiracetam improves the impairment of local cerebral blood flow and glucose utilization after chronic focal cerebral ischemia in rats. Pharmacology 2002, 64, 119.10.1159/000056160Search in Google Scholar PubMed

26. Omotuyi, O. I., Ueda, H. Molecular dynamics study-based mechanism of nefiracetam-induced NMDA receptor potentiation. Comput. Biol. Chem. 2015, 55, 14.10.1016/j.compbiolchem.2015.01.004Search in Google Scholar PubMed

27. Sanad, M. H., Saleh, G. M., Marzook, F. A. Radioiodination and biological evaluation of nizatidine as a new highly selective radiotracer for peptic ulcer disorder detection. J. Label. Compd. Radiopharm. 2017, 60, 600.10.1002/jlcr.3541Search in Google Scholar PubMed

28. Sanad, M. H., Salama, D. H., Marzook, F. A. Radioiodinated famotidine as a new highly selective radiotracer for peptic ulcer disorder detection, diagnostic nuclear imaging and biodistribution. Radiochim. Acta 2017, 105, 389.10.1515/ract-2016-2683Search in Google Scholar

29. Sanad, M. H., Ibrahim, I. T. Radiodiagnosis of peptic ulcer with technetium-99m labeled rabeprazole. Radiochemistry 2015, 57, 425.10.1134/S1066362215040165Search in Google Scholar

30. Sanad, M. H., Amin, A. M. Optimization of labeling conditions and bioevalution of 99mTc-meloxicam for inflammation imaging. Radiochemistry 2013, 55, 521.10.1134/S1066362213050123Search in Google Scholar

31. Borai, E. H., Sanad, M. H., Fouzy, A. S. M. Optimized chromatographic separation and biological evaluation of 99mTc-clarithromycin for infective inflammation diagnosis. Radiochemistry 2016, 58, 84.10.1134/S1066362216010136Search in Google Scholar

32. Sanad, M. H., Challan, S. B. Radioiodination and biological evaluation of rabeprazole as a peptic ulcer localization radiotracer. Radiochemistry 2017, 59, 307.10.1134/S1066362217030158Search in Google Scholar

33. Motaleb, M. A., Adli, A. S. A, El-Tawoosy, M., Sanad, M. H., AbdAllah, M. An easy and effective method for synthesis and radiolabelling of risedronate as a model for bone imaging. J. Label Compd. Radiopharm 2016, 59, 157.10.1002/jlcr.3384Search in Google Scholar PubMed

34. El-Kawy, O., Sanad, M. H., Marzook, F. 99mTc-Mesalamine as potential agent for diagnosis and monitoring of ulcerative colitis: labelling, characterisation and biological evaluation. J. Radioanal. Nucl. Chem. 2016, 308, 279.10.1007/s10967-015-4338-4Search in Google Scholar

Received: 2020-12-24
Accepted: 2021-05-08
Published Online: 2021-05-21
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2020-0125/html
Scroll to top button