Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 22, 2021

Modeling and Performance Optimization of Double-Resonance Electronic Cooling Device with Three Electron Reservoirs

  • Zemin Ding , Susu Qiu , Lingen Chen EMAIL logo and Wenhua Wang

Abstract

In this paper, a new model of the three-electron reservoir energy selective electronic cooling device applying double-resonance energy filters is proposed by using finite time thermodynamics. The analytical formulas of the main performance parameters for the double-resonance three-electron reservoir cooling device are derived. The optimal cooling load and coefficient of performance of the cooling device varying with major structure design parameters are explored and the optimal operation regions are further determined. Moreover, detailed analyses are conducted to reveal the influences of center energy level difference, chemical potential difference, energy level width, energy spacing and the phonon transmission induced heat leakage on the optimal performance characteristics of the cooling device. Finally, a performance comparison is made between the double-resonance and single-resonance three-electron reservoir electronic cooling devices. It is shown that through reasonable structure design, the optimal performance characteristics of the double-resonance device can be controlled to be much higher than those of the single-resonance cooling device.

Funding statement: This work is supported by the National Natural Science Foundation of China (grant Nos. 11974429, 51576207 and 51306206), the Hubei Province Natural Science Foundation of China (grant No. 2017CFB498), and the independent scientific research project of Naval University of Engineering (425317Q016).

Acknowledgment

The authors wish to thank the reviewers for their careful, unbiased and constructive suggestions, which led to this revised manuscript.

References

[1] T. J. Liao, X. H. Chen, B. H. Lin and J. C. Chen, Performance evaluation and parametric optimum design of a vacuum thermionic solar cell, Appl. Phys. Lett.108 (2016), no. 3, 033901.10.1063/1.4940195Search in Google Scholar

[2] S. M. Pourkiaei, M. H. Ahmadi, M. Sadeghzadeh, S. Moosavi, F. Pourfayaz, L. Chen, et al., Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials, Energy189 (2019), 115849.10.1016/j.energy.2019.07.179Search in Google Scholar

[3] U. Eckern and K. I. Wysokiński, Two- and three-terminal far-from-equilibrium thermoelectric nanodevices in the Kondo regime, New J. Phys.22 (2020), no. 1, 013045.10.1088/1367-2630/ab6874Search in Google Scholar

[4] T. E. Humphrey, R. Newbury, R. P. Taylor and H. Linke, Reversible quantum Brownian heat engines for electrons, Phys. Rev. Lett.89 (2002), no. 11, 116801.10.1103/PhysRevLett.89.116801Search in Google Scholar PubMed

[5] J. Z. He, X. M. Wang and H. N. Liang, Optimum performance analysis of an energy selective electron refrigerator affected by heat leaks, Phys. Scr.80 (2009), no. 3, 035701.10.1088/0031-8949/80/03/035701Search in Google Scholar

[6] X. Luo, C. Li, N. Liu, R. W. Li, J. Z. He and T. Qiu, The impact of energy spectrum width in the energy selective electron low-temperature thermionic heat engine at maximum power, Phys. Lett. A377 (2013), no. 25/27, 1566–1570.10.1016/j.physleta.2013.04.045Search in Google Scholar

[7] Z. M. Ding, L. G. Chen and F. R. Sun, Modeling and performance analysis of energy selective electron (ESE) engine with heat leakage and transmission probability, Sci. China, Phys. Mech. Astron.54 (2011), no. 11, 1925–1936.10.1007/s11433-011-4473-zSearch in Google Scholar

[8] G. Z. Su, Y. C. Zhang, L. Cai, S. H. Su and J. C. Chen, Conceptual design and simulation investigation of an electronic cooling device powered by hot electrons, Energy90 (2015), no. 2, 1842–1847.10.1016/j.energy.2015.07.019Search in Google Scholar

[9] S. H. Su, Y. C. Zhang, J. C. Chen and T. M. Shih, Thermal electron-tunneling devices as coolers and amplifiers, Sci. Rep.6 (2016), 21425.10.1038/srep21425Search in Google Scholar PubMed PubMed Central

[10] W. L. Peng, T. J. Liao, Y. C. Zhang, G. Z. Su, G. X. Lin and J. C. Chen, Parametric selection criteria of thermal electron-tunneling amplifiers operating at optimum states, Energy Convers. Manag.143 (2017), 391–398.10.1016/j.enconman.2017.04.029Search in Google Scholar

[11] W. L. Peng, Y. C. Zhang, Z. M. Yang and J. C. Chen, Performance evaluation and comparison of three-terminal energy selective electron devices with different connective ways and filter configurations, Eur. Phys. J. Plus133 (2018), 38.10.1140/epjp/i2018-11860-0Search in Google Scholar

[12] G. Z. Su, T. J. Liao, L. W. Chen and J. C. Chen, Performance evaluation and optimum design of a new-type electronic cooling device, Energy101 (2016), 421–426.10.1016/j.energy.2016.02.059Search in Google Scholar

[13] S. S. Qiu, Z. M. Ding, L. G. Chen, F. K. Meng and F. R. Sun, Optimal performance region of energy selective electron cooling devices consisting of three reservoirs, Eur. Phys. J. Plus134 (2019), no. 6, 273.10.1140/epjp/i2019-12600-8Search in Google Scholar

[14] G. Z. Su, Y. Z. Pan, Y. C. Zhang, T.-M. Shih and J. C. Chen, An electronic cooling device with multiple energy selective tunnels, Energy113 (2016), 723–727.10.1016/j.energy.2016.07.077Search in Google Scholar

[15] W. L. Peng, Z. L. Ye, X. Zhang and J. C. Chen, Performance improvement of a four-terminal thermal amplifier with multiple energy selective tunnels, Energy Convers. Manag.166 (2018), 74–80.10.1016/j.enconman.2018.04.026Search in Google Scholar

[16] X. Wang, J. He and W. Tang, Performance characteristics of an energy selective electron refrigerator with double resonances, Chin. Phys. B18 (2009), no. 3, 984–991.10.1088/1674-1056/18/3/023Search in Google Scholar

[17] Y. H. Yu, Z. M. Ding, L. G. Chen, W. H. Wang and F. R. Sun, Power and efficiency optimization for an energy selective electron heat engine with double-resonance energy filter, Energy107 (2016), 287–294.10.1016/j.energy.2016.04.006Search in Google Scholar

[18] Z. M. Ding, L. G. Chen and F. R. Sun, Heating load and COP optimization of a double resonance energy selective electron (ESE) heat pump, Int. J. Low-Carbon Techn.11 (2016), no. 3, 383–392.10.1093/ijlct/ctt079Search in Google Scholar

[19] Z. M. Ding, L. G. Chen, Y. L. Ge and Z. H. Xie, Optimal performance regions of an irreversible energy selective electron heat engine with double resonances, Sci. China, Technol. Sci.62 (2019), no. 3, 337–405.10.1007/s11431-018-9357-5Search in Google Scholar

[20] S. Sieniutycz and J. S. Shiner, Thermodynamics of irreversible processes and its relation to chemical engineering: Second law analyses and finite time thermodynamics, J. Non-Equilib. Thermodyn.19 (1994), no. 4, 303–348.Search in Google Scholar

[21] K. H. Hoffmann, J. M. Burzler, and S. Schubert, Endoreversible thermodynamics, J. Non-Equilib. Thermodyn.22 (1997), no. 4, 311–355.Search in Google Scholar

[22] R. S. Berry, V. A. Kazakov, S. Sieniutycz, Z. Szwast and A. M. Tsirlin, Thermodynamic Optimization of Finite Time Processes, Wiley, Chichester, 1999.Search in Google Scholar

[23] L. G. Chen, C. Wu and F. R. Sun, Finite time thermodynamic optimization of entropy generation minimization of energy systems, J. Non-Equilib. Thermodyn.24 (1999), no. 4, 327–359.10.1515/JNETDY.1999.020Search in Google Scholar

[24] K. H. Hoffman, J. Burzler, A. Fischer, M. Schaller and S. Schubert, Optimal process paths for endoreversible systems, J. Non-Equilib. Thermodyn.28 (2003), no. 3, 233–268.10.1515/JNETDY.2003.015Search in Google Scholar

[25] L. G. Chen, Finite-Time Thermodynamic Analysis of Irreversible Processes and Cycles, Higher Education Press, Beijing, 2005 (in Chinese).Search in Google Scholar

[26] W. Muschik and K. H. Hoffmann, Endoreversible thermodynamics: A tool for simulating and comparing processes of discrete systems, J. Non-Equilib. Thermodyn.31 (2006), no. 3, 293–317.10.1515/JNETDY.2006.013Search in Google Scholar

[27] B. Andresen, Current trends in finite-time thermodynamics, Angew. Chem. Int. Ed.50 (2011), no. 12, 2690–2704.10.1002/anie.201001411Search in Google Scholar PubMed

[28] S. Sieniutycz and J. Jezowski, Energy Optimization in Process Systems and Fuel Cells, Elsevier, Oxford, UK, 2013.Search in Google Scholar

[29] Y. L. Feng, L. G. Chen, F. K. Meng and F. R. Sun, Thermodynamic analysis of TEG-TEC device including influence of Thomson effect, J. Non-Equilib. Thermodyn.43 (2018), no. 1, 75–86.10.1515/jnet-2017-0029Search in Google Scholar

[30] D. Kingston and A. C. Razzitte, Entropy generation minimization in Dimethyl Ether synthesis: A case study, J. Non-Equilib. Thermodyn.43 (2018), no. 2, 111–120.10.1515/jnet-2017-0050Search in Google Scholar

[31] R. T. Paéz-Hernández, J. C. Chimal-Eguía, N. Sánchez-Salas and D. Ladino-Luna, General properties for an Agrawal thermal engine, J. Non-Equilib. Thermodyn.43 (2018), no. 2, 131–140.10.1515/jnet-2017-0051Search in Google Scholar

[32] K. Schwalbe and K. H. Hoffmann, Novikov engine with fluctuating heat bath temperature, J. Non-Equilib. Thermodyn.43 (2018), no. 2, 141–150.10.1515/jnet-2018-0003Search in Google Scholar

[33] T. N. F. Roach, P. Salamon, J. Nulton, B. Andresen, B. Felts, A. Haas, et al., Application of finite-time and control thermodynamics to biological processes at multiple scales, J. Non-Equilib. Thermodyn.43 (2018), no. 3, 193–210.10.1515/jnet-2018-0008Search in Google Scholar

[34] K. Schwalbe and K. H. Hoffmann, Optimal control of an endoreversible solar power plant, J. Non-Equilib. Thermodyn.43 (2018), no. 3, 255–272.10.1515/jnet-2018-0021Search in Google Scholar

[35] K. Schwalbe and K. H. Hoffmann, Performance features of a stationary stochastic Novikov engine, Entropy20 (2018), no. 1, 52.10.3390/e20010052Search in Google Scholar PubMed PubMed Central

[36] K. Schwalbe and K. H. Hoffmann, Stochastic Novikov engine with time dependent temperature fluctuations, Appl. Therm. Eng.142 (2018), 483–488.10.1016/j.applthermaleng.2018.07.045Search in Google Scholar

[37] H. J. Feng, G. S. Tao, C. Q. Tang, Y. L. Ge, L. G. Chen and S. J. Xia, Exergoeconomic performance optimization for a regenerative gas turbine closed-cycle heat and power cogeneration plant, Energy Rep.5 (2019), 1525–1531.10.1016/j.egyr.2019.10.024Search in Google Scholar

[38] P. L. Li, L. G. Chen, S. J. Xia and L. Zhang, Maximum hydrogen production rate optimization in tubular steam methane reforming reactor, Int. J. Chem. React. Eng.19 (2019), no. 9, 20180191.10.1515/ijcre-2018-0191Search in Google Scholar

[39] F. L. Zhu, L. G. Chen and W. H. Wang, Thermodynamic analysis and optimization of irreversible Maisotsenko-Diesel cycle, J. Therm. Sci.28 (2019), no. 4, 659–668.10.1007/s11630-019-1153-1Search in Google Scholar

[40] P. L. Li, L. G. Chen, S. J. Xia and L. Zhang, Entropy generation rate minimization for in methanol synthesis via CO2 hydrogenation reactor, Entropy21 (2019), no. 2, 174.10.3390/e21020174Search in Google Scholar PubMed PubMed Central

[41] L. Zhang, L. G. Chen, S. J. Xia, Y. L. Ge, C. Wang and H. J. Feng, Entropy generation rate minimization for hydrocarbon synthesis reactor from carbon dioxide and hydrogen, Int. J. Heat Mass Transf.137 (2019), 1112–1123.10.1016/j.ijheatmasstransfer.2019.04.022Search in Google Scholar

[42] K. Schwalbe and K. H. Hoffmann, Stochastic Novikov engine with Fourier heat transport, J. Non-Equilib. Thermodyn.44 (2019), no. 4, 417–424.10.1515/jnet-2019-0063Search in Google Scholar

[43] J. F. Shen, L. G. Chen, Y. L. Ge, F. L. Zhu and Z. X. Wu, Optimum ecological performance of irreversible reciprocating Maisotsenko-Brayton cycle, Eur. Phys. J. Plus134 (2019), no. 6, 293.10.1140/epjp/i2019-12648-4Search in Google Scholar

[44] F. Marsik, B. Weigand, M. Tomas, O. Tucek and P. Novotny, On the efficiency of electrochemical devices from the perspective of endoreversible thermodynamics, J. Non-Equilib. Thermodyn.44 (2019), no. 4, 425–438.10.1515/jnet-2018-0076Search in Google Scholar

[45] X. W. Liu, L. G. Chen, S. H. Wei and F. K. Meng, Optimal ecological performance investigation of a quantum harmonic oscillator Brayton refrigerator, Trans. ASME, J.f Thermal Sci. Eng. Appl. 12 (2020), no. 1, 011007.10.1115/1.4043186Search in Google Scholar

[46] L. G. Chen, F. K. Meng, Z. M. Ding, S. J. Xia and H. J. Feng, Thermodynamic modeling and analysis of an air-cooled small space thermoelectric cooler, Eur. Phys. J. Plus135 (2020), no. 1, 80.10.1140/epjp/s13360-019-00020-3Search in Google Scholar

[47] L. G. Chen, X. W. Liu, F. Wu, S. J. Xia and H. J. Feng, Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with harmonic oscillators, Physica A: Statis. Mech. Appl. 537 (2020), 122597.10.1016/j.physa.2019.122597Search in Google Scholar

[48] L. G. Chen, X. W. Liu, F. Wu, H. J. Feng and S. J. Xia, Power and efficiency optimization of an irreversible quantum Carnot heat engine working with harmonic oscillators, Physica A: Statis. Mech. Appl. 550 (2020), 124140.10.1016/j.physa.2020.124140Search in Google Scholar

[49] L. G. Chen, Y. L. Ge, C. Liu, H. J. Feng and G. Lorenzini, Performance of universal reciprocating heat-engine cycle with variable specific heats ratio of working fluid, Entropy22 (2020), no. 4, 397.10.3390/e22040397Search in Google Scholar PubMed PubMed Central

[50] Z. W. Meng, L. G. Chen and F. Wu, Optimal power and efficiency of multi-stage endoreversible quantum Carnot heat engine with harmonic oscillators at the classical limit, Entropy22 (2020), no. 4, 457.10.3390/e22040457Search in Google Scholar PubMed PubMed Central

[51] L. G. Chen, H. J. Feng and Y. L. Ge, Power and efficiency optimization for open combined regenerative Brayton and inverse Brayton cycles with regeneration before the inverse cycle, Entropy22 (2020), no. 6, 677.10.3390/e22060677Search in Google Scholar PubMed PubMed Central

[52] L. G. Chen, K. Ma, Y. L. Ge and H. J. Feng, Re-optimization of expansion work of a heated working fluid with generalized radiative heat transfer law, Entropy22 (2020), no. 7, 720.10.3390/e22070720Search in Google Scholar PubMed PubMed Central

[53] M. Sun, S. J. Xia, L. G. Chen, C. Wang and C. Q. Tang, Minimum entropy generation rate and maximum yield optimization of sulfuric acid decomposition process using NSGA-II, Entropy22 (2020), no. 10, 1065.10.3390/e22101065Search in Google Scholar PubMed PubMed Central

[54] S. S. Shi, Y. L. Ge, L. G. Chen and F. R. Feng, Four objective optimization of irreversible Atkinson cycle based on NSGA-II, Entropy22 (2020), no. 10, 1150.10.3390/e22101150Search in Google Scholar PubMed PubMed Central

[55] C. Q. Tang, L. G. Chen, H. J. Feng, W. H. Wang and Y. L. Ge, Power optimization of a closed binary Brayton cycle with isothermal heating processes and coupled to variable-temperature reservoirs, Energies13 (2020), no. 12, 3212.10.3390/en13123212Search in Google Scholar

[56] L. G. Chen, K. Ma, H. J. Feng and Y. L. Ge, Optimal configuration of a gas expansion process in a piston-type cylinder with generalized convective heat transfer law, Energies13 (2020), no. 12, 3229.10.3390/en13123229Search in Google Scholar

[57] L. G. Chen, C. Q. Tang, H. J. Feng and Y. L. Ge, Power, efficiency, power density and ecological function optimizations for an irreversible modified closed variable-temperature reservoir regenerative Brayton cycle with one isothermal heating process, Energies13 (2020), no. 19, 5133.10.3390/en13195133Search in Google Scholar

[58] L. G. Chen, F. K. Meng, Y. L. Ge, H. J. Feng and S. J. Xia, Performance optimization of a class of combined thermoelectric heating devices, Sci. China, Technol. Sci.63 (2020), no. 12, 2640–2648.10.1007/s11431-019-1518-xSearch in Google Scholar

[59] L. Zhang, L. G. Chen, S. J. Xia, Y. L. Ge, C. Wang and H. J. Feng, Multi-objective optimization for helium-heated reverse water gas shift reactor by using NSGA-II, Int. J. Heat Mass Transf. (2020), 148. 119025.10.1016/j.ijheatmasstransfer.2019.119025Search in Google Scholar

[60] L. G. Chen, B. Yang, H. J. Feng, Y. L. Ge and S. J. Xia, Performance optimization of an open simple-cycle gas turbine combined cooling, heating and power plant driven by basic oxygen furnace gas in China’s steelmaking plants, Energy (2020), 203. 117791.10.1016/j.energy.2020.117791Search in Google Scholar

[61] Z. M. Ding, Y. L. Ge, L. G. Chen, H. J. Feng and S. J. Xia, Optimal performance regions of Feynman’s ratchet engine with different optimization criteria, J. Non-Equilib. Thermodyn.45 (2020), no. 2, 191–207.10.1515/jnet-2019-0102Search in Google Scholar

[62] H. J. Feng, W. X. Qin, L. G. Chen, C. G. Cai, Y. L. Ge and S. J. Xia, Power output, thermal efficiency and exergy-based ecological performance optimizations of an irreversible KCS-34 coupled to variable temperature heat reservoirs, Energy Convers. Manag.205 (2020), 112424.10.1016/j.enconman.2019.112424Search in Google Scholar

[63] Z. X. Wu, H. J. Feng, L. G. Chen, W. Tang, J. Z. Shi and Y. L. Ge, Constructal thermodynamic optimization for ocean thermal energy conversion system with dual-pressure organic Rankine cycle, Energy Convers. Manag.210 (2020), 112727.10.1016/j.enconman.2020.112727Search in Google Scholar

[64] L. G. Chen, J. F. Shen, Y. L. Ge, Z. X. Wu, W. H. Wang, F. L. Zhu, et al., Power and efficiency optimization of open Maisotsenko-Brayton cycle and performance comparison with traditional open regenerated Brayton cycle, Energy Convers. Manag.217 (2020), 113001.10.1016/j.enconman.2020.113001Search in Google Scholar

[65] H. J. Feng, W. J. Chen, L. G. Chen and W. Tang, Power and efficiency optimizations of an irreversible regenerative organic Rankine cycle, Energy Convers. Manag.220 (2020), 113079.10.1016/j.enconman.2020.113079Search in Google Scholar

[66] L. G. Chen, H. J. Feng and Y. L. Ge, Maximum energy output chemical pump configuration with an infinite-low- and a finite-high-chemical potential mass reservoirs, Energy Convers. Manag.223 (2020), 113261.10.1016/j.enconman.2020.113261Search in Google Scholar

[67] S. S. Qiu, Z. M. Ding and L. G. Chen, Performance evaluation and parametric optimum design of irreversible thermionic generators based on van der Waals heterostructures, Energy Convers. Manag.225 (2020), 113360.10.1016/j.enconman.2020.113360Search in Google Scholar

[68] R. Masser and K. H. Hoffmann, Dissipative endoreversible engine with given efficiency, Entropy21 (2019), no. 11, 1117.10.3390/e21111117Search in Google Scholar

[69] R. Masser and K. H. Hoffmann, Endoreversible modeling of a hydraulic recuperation system, Entropy22 (2020), no. 4, 383.10.3390/e22040383Search in Google Scholar PubMed PubMed Central

[70] S. Levario-Medina, G. Valencia-Ortega and M. A. Barranco-Jimenez, Energetic optimization considering a generalization of the ecological criterion in traditional simple-cycle and combined cycle power plants, J. Non-Equilib. Thermodyn.45 (2020), no. 3, 269–290.10.1515/jnet-2019-0088Search in Google Scholar

[71] W. Muschik and K. H. Hoffmann, Modeling, simulation, and reconstruction of 2-reservoir heat-to-power processes in finite-time thermodynamics, Entropy22 (2020), no. 9, 997.10.3390/e22090997Search in Google Scholar PubMed PubMed Central

[72] B. Andresen and C. Essex, Thermodynamics at very long time and space scales, Entropy22 (2020), no. 10, 1090.10.3390/e22101090Search in Google Scholar PubMed PubMed Central

[73] R. Kong, L. G. Chen, S. J. Xia, P. L. Li and Y. L. Ge, Minimizing entropy generation rate in hydrogen iodide decomposition reactor heated by high-temperature helium, Entropy23 (2021), no. 1, 82.10.3390/e23010082Search in Google Scholar PubMed PubMed Central

[74] Y. L. Ge, L. G. Chen and H. J. Feng, Ecological optimization of an irreversible Diesel cycle, Eur. Phys. J. Plus136 (2021), no. 2, 198.10.1140/epjp/s13360-021-01162-zSearch in Google Scholar

[75] C. Q. Tang, L. G. Chen, H. J. Feng and Y. L. Ge, Four-objective optimization for an irreversible closed modified simple Brayton cycle, Entropy23 (2021), no. 3, 282.10.3390/e23030282Search in Google Scholar PubMed PubMed Central

[76] H. J. Feng, Z. X. Wu, L. G. Chen and Y. L. Ge, Constructal thermodynamic optimization for dual-pressure organic Rankine cycle in waste heat utilization system, Energy Convers. Manag.227 (2021), 113585.10.1016/j.enconman.2020.113585Search in Google Scholar

[77] H. Wu, Y. L. Ge, L. G. Chen and H. J. Feng, Power, efficiency, ecological function and ecological coefficient of performance optimizations of an irreversible Diesel cycle based on finite piston speed, Energy216 (2021), 119235.10.1016/j.energy.2020.119235Search in Google Scholar

[78] X. W. Liu, L. G. Chen, Y. L. Ge, H. J. Feng, F. Wu and G. Lorenzini, Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with spin-1/2 systems, J. Non-Equilib. Thermodyn.46 (2021), no. 1, 61–76.10.1515/jnet-2020-0028Search in Google Scholar

[79] C. Z. Qi, Z. M. Ding, L. G. Chen, Y. L. Ge and H. J. Feng, Model of irreversible two-stage combined thermal Brownian refrigerators and its optimal performance, J. Non-Equilib. Thermodyn.46 (2021), no. 2, DOI: 10.1515/jnet-2020-0084.Search in Google Scholar

[80] R. S. Berry, P. Salamon, and B. Andresen, How it all began, Entropy22 (2020), no. 8, 908.10.3390/e22080908Search in Google Scholar

[81] J. C. Chen, A. M. Chang and M. R. Melloch, Transition between quantum states in a parallel-coupled double quantum dot, Phys. Rev. Lett.92 (2004), no. 17, 176801.10.1103/PhysRevLett.92.176801Search in Google Scholar

[82] S. Gou, H. Toshiaki, H. Yoshiro and F. Toshimasa, Controlled resonant tunneling in a coupled double-quantum-dot system, Appl. Phys. Lett.90 (2007), no. 10, 103116.10.1063/1.2709905Search in Google Scholar

[83] V. S. Khrapai, S. Ludwig, J. P. Kotthaus, H. P. Tranitz and W. Wegscheider, Double-dot quantum ratchet driven by an independently biased quantum point contact, Phys. Rev. Lett.97 (2006), no. 17, 176803.10.1103/PhysRevLett.97.176803Search in Google Scholar

[84] Y. Hori, S. Kano, H. Sugimoto, K. Imakita and M. Fujii, Size-dependence of acceptor and donor levels of boron and phosphorus codoped colloidal silicon nanocrystals, Nano Lett.16 (2016), no. 4, 2615–2620.10.1021/acs.nanolett.6b00225Search in Google Scholar

[85] A. Bejan, Theory of heat transfer-irreversible power plant, Int. J. Heat Mass Transf.31 (1988), no. 6, 1211–1219.10.1016/0017-9310(88)90064-6Search in Google Scholar

[86] A. Bejan, Theory of heat transfer-irreversible refrigeration plants, Int. J. Heat Mass Transf.32 (1989), no. 9, 1631–1639.10.1016/0017-9310(89)90045-8Search in Google Scholar

[87] H. L. Edwards, Q. Niu and A. L. De Lozanne, A quantum-dot refrigerator, Appl. Phys. Lett.63 (1993), no. 13, 1815–1817.10.1063/1.110672Search in Google Scholar

[88] H. L. Edwards, Q. Niu, G. A. Georgakis and A. L. De Lozanne, Cryogenic cooling using tunneling structures with sharp energy features, Phys. Rev. B52 (1995), no. 8, 5714–5736.10.1103/PhysRevB.52.5714Search in Google Scholar PubMed

[89] H. H. Su, J. W. Wang, Q. Y. Zhao and J. Z. He, A three-terminal quantum dot heat engine based on ideal resonant tunneling, Sci. Sin. Technol.46 (2016), no. 12, 1296–1302. (in Chinese).10.1360/N092015-00219Search in Google Scholar

[90] S. Kano and M. Fujii, Conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage, Nanotechnology28 (2017), no. 9, 095403.10.1088/1361-6528/aa5939Search in Google Scholar PubMed

[91] G. Jaliel, R. K. Puddy, R. Sánchez, A. N. Jordan, B. Sothmann, I. Farrer, et al., Experimental realization of a quantum dot energy harvester, Phys. Rev. Lett.123 (2019), no. 11, 117701.10.1103/PhysRevLett.123.117701Search in Google Scholar PubMed

[92] Y. Y. Yang, S. Xu, W. Li and J. Z. He, Optimal performance of three-terminal nanowire heat engine based on one dimensional ballistic conductors, Phys. Scr.95 (2020), no. 9, 095001.10.1088/1402-4896/aba77aSearch in Google Scholar

[93] W. Li, Y. Y. Yang, J. Fu, Z. B. Lin and J. Z. He, Thermodynamic performance and optimal analysis of a multi-level quantum dot thermal amplifier, ES Energy Environ.7 (2020), 40–47.10.30919/esee8c362Search in Google Scholar

Received: 2020-10-30
Revised: 2021-03-06
Accepted: 2021-04-09
Published Online: 2021-04-22
Published in Print: 2021-07-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/jnet-2020-0105/html
Scroll to top button