CC BY-NC-ND 4.0 · Thromb Haemost 2021; 121(09): 1122-1137
DOI: 10.1055/s-0040-1722187
Review Article

Uncovering Membrane-Bound Models of Coagulation Factors by Combined Experimental and Computational Approaches

Y. Zenmei Ohkubo*
1   Department of Bioinformatics, School of Life and Natural Sciences, Abdullah Gül University, Kayseri, Turkey
,
2   Global and Planetary Health, College of Public Health, University of South Florida, Tampa, Florida, United States
› Author Affiliations
Funding This work was supported in part by Abdullah Gül Üniversitesi Bilimsel Araştırma Projeleri (TSA-2017-90 to Y.Z.O.).

Abstract

In the life sciences, including hemostasis and thrombosis, methods of structural biology have become indispensable tools for shedding light on underlying mechanisms that govern complex biological processes. Advancements of the relatively young field of computational biology have matured to a point where it is increasingly recognized as trustworthy and useful, in part due to their high space–time resolution that is unparalleled by most experimental techniques to date. In concert with biochemical and biophysical approaches, computational studies have therefore proven time and again in recent years to be key assets in building or suggesting structural models for membrane-bound forms of coagulation factors and their supramolecular complexes on membrane surfaces where they are activated. Such endeavors and the proposed models arising from them are of fundamental importance in describing and understanding the molecular basis of hemostasis under both health and disease conditions. We summarize the body of work done in this important area of research to drive forward both experimental and computational studies toward new discoveries and potential future therapeutic strategies.

* Equally contributed as corresponding co-authors.




Publication History

Received: 18 May 2020

Accepted: 11 November 2020

Article published online:
02 July 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Furie B, Furie BC. The molecular basis of blood coagulation. Cell 1988; 53 (04) 505-518
  • 2 Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med 2008; 359 (09) 938-949
  • 3 Smith SA, Travers RJ, Morrissey JH. How it all starts: initiation of the clotting cascade. Crit Rev Biochem Mol Biol 2015; 50 (04) 326-336
  • 4 Morrissey JH, Davis-Harrison RL, Tavoosi N. et al. Protein-phospholipid interactions in blood clotting. Thromb Res 2010; 125 (Suppl. 01) S23-S25
  • 5 Cho W, Stahelin RV. Membrane-protein interactions in cell signaling and membrane trafficking. Annu Rev Biophys Biomol Struct 2005; 34: 119-151
  • 6 Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI. The role of hydrophobic interactions in positioning of peripheral proteins in membranes. BMC Struct Biol 2007; 7: 44
  • 7 Pellequer J-L, Gale AJ, Griffin JH, Getzoff ED. Homology models of the C domains of blood coagulation factors V and VIII: a proposed membrane binding mode for FV and FVIII C2 domains. Blood Cells Mol Dis 1998; 24 (04) 448-461
  • 8 Venkateswarlu D, Perera L, Darden T, Pedersen LG. Structure and dynamics of zymogen human blood coagulation factor X. Biophys J 2002; 82 (03) 1190-1206
  • 9 Ohkubo YZ, Tajkhorshid E. Distinct structural and adhesive roles of Ca2+ in membrane binding of blood coagulation factors. Structure 2008; 16 (01) 72-81
  • 10 Madsen JJ, Persson E, Olsen OH. Tissue factor activates allosteric networks in factor VIIa through structural and dynamic changes. J Thromb Haemost 2015; 13 (02) 262-267
  • 11 Norledge BV, Petrovan RJ, Ruf W, Olson AJ. The tissue factor/factor VIIa/factor Xa complex: a model built by docking and site-directed mutagenesis. Proteins 2003; 53 (03) 640-648
  • 12 Manna D, Bhardwaj N, Vora MS, Stahelin RV, Lu H, Cho W. Differential roles of phosphatidylserine, PtdIns(4,5)P2, and PtdIns(3,4,5)P3 in plasma membrane targeting of C2 domains. Molecular dynamics simulation, membrane binding, and cell translocation studies of the PKCα C2 domain. J Biol Chem 2008; 283 (38) 26047-26058
  • 13 Forneris F, Burnley BT, Gros P. Ensemble refinement shows conformational flexibility in crystal structures of human complement factor D. Acta Crystallogr D Biol Crystallogr 2014; 70 (Pt 3): 733-743
  • 14 Sorensen AB, Madsen JJ, Frimurer TM. et al. Allostery in coagulation factor VIIa revealed by ensemble refinement of crystallographic structures. Biophys J 2019; 116 (10) 1823-1835
  • 15 Kirchhofer D, Lipari MT, Moran P, Eigenbrot C, Kelley RF. The tissue factor region that interacts with substrates factor IX and Factor X. Biochemistry 2000; 39 (25) 7380-7387
  • 16 Carlsson K, Freskgård P-O, Persson E, Carlsson U, Svensson M. Probing the interface between factor Xa and tissue factor in the quaternary complex tissue factor-factor VIIa-factor Xa-tissue factor pathway inhibitor. Eur J Biochem 2003; 270 (12) 2576-2582
  • 17 Ke K, Yuan J, Morrissey JH. Tissue factor residues that putatively interact with membrane phospholipids. PLoS One 2014; 9 (02) e88675
  • 18 McLean MA, Gregory MC, Sligar SG. Nanodiscs: A controlled bilayer surface for the study of membrane proteins. Annu Rev Biophys 2018; 47: 107-124
  • 19 Goodsell D. PDB-101 Molecule of the Month, September 2019: Nanodiscs and HDL. Accessed December 1, 2020 at: https://pdb101.rcsb.org/motm/237
  • 20 Kohout SC, Corbalán-García S, Gómez-Fernández JC, Falke JJ. C2 domain of protein kinase Cα: elucidation of the membrane docking surface by site-directed fluorescence and spin labeling. Biochemistry 2003; 42 (05) 1254-1265
  • 21 Tavoosi N, Smith SA, Davis-Harrison RL, Morrissey JH. Factor VII and protein C are phosphatidic acid-binding proteins. Biochemistry 2013; 52 (33) 5545-5552
  • 22 Stoilova-McPhie S. Lipid nanotechnologies for structural studies of membrane-associated clotting proteins by cryo-electron microscopy. Nanotechnol Rev 2017; 6 (01) 127-137
  • 23 Chen C-H, Málková Š, Cho W, Schlossman ML. Configuration of membrane-bound proteins by X-ray reflectivity. J Appl Phys 2011; 110 (10) 1-4
  • 24 Chen C-H, Málková S, Pingali SV. et al. Configuration of PKCalpha-C2 domain bound to mixed SOPC/SOPS lipid monolayers. Biophys J 2009; 97 (10) 2794-2802
  • 25 Johansson LC, Stauch B, Ishchenko A, Cherezov V. A bright future for serial femtosecond crystallography with XFELs. Trends Biochem Sci 2017; 42 (09) 749-762
  • 26 Persson E, Kjalke M, Olsen OH. Rational design of coagulation factor VIIa variants with substantially increased intrinsic activity. Proc Natl Acad Sci U S A 2001; 98 (24) 13583-13588
  • 27 Hoffman M, Colina CM, McDonald AG, Arepally GM, Pedersen L, Monroe DM. Tissue factor around dermal vessels has bound factor VII in the absence of injury. J Thromb Haemost 2007; 5 (07) 1403-1408
  • 28 Olsen OH, Rand KD, Østergaard H, Persson E. A combined structural dynamics approach identifies a putative switch in factor VIIa employed by tissue factor to initiate blood coagulation. Protein Sci 2007; 16 (04) 671-682
  • 29 Boettcher JM, Davis-Harrison RL, Clay MC. et al. Atomic view of calcium-induced clustering of phosphatidylserine in mixed lipid bilayers. Biochemistry 2011; 50 (12) 2264-2273
  • 30 Tavoosi N, Davis-Harrison RL, Pogorelov TV. et al. Molecular determinants of phospholipid synergy in blood clotting. J Biol Chem 2011; 286 (26) 23247-23253
  • 31 Sorensen AB, Madsen JJ, Svensson LA. et al. Molecular basis of enhanced activity in factor VIIa-trypsin variants conveys insights into tissue factor-mediated allosteric regulation of factor VIIa activity. J Biol Chem 2016; 291 (09) 4671-4683
  • 32 Nielsen AL, Sorensen AB, Holmberg HL. et al. Engineering of a membrane-triggered activity switch in coagulation factor VIIa. Proc Natl Acad Sci U S A 2017; 114 (47) 12454-12459
  • 33 Villoutreix BO, Miteva MA. Discoidin domains as emerging therapeutic targets. Trends Pharmacol Sci 2016; 37 (08) 641-659
  • 34 Horava SD, Peppas NA. Recent advances in hemophilia B therapy. Drug Deliv Transl Res 2017; 7 (03) 359-371
  • 35 Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE. Biomolecular simulation: a computational microscope for molecular biology. Annu Rev Biophys 2012; 41 (01) 429-452
  • 36 Leach AR. Molecular Modelling: Principles and Applications. 2nd ed. Harlow: Pearson; 2001
  • 37 Schlick T. Molecular Modeling and Simulation: An Interdisciplinary Guide. 2nd ed. New York, NY: Springer; 2010
  • 38 Berman HM, Westbrook J, Feng Z. et al. The Protein Data Bank. Nucleic Acids Res 2000; 28 (01) 235-242
  • 39 Banner DW, D'Arcy A, Chène C. et al. The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature 1996; 380 (6569): 41-46
  • 40 Brandstetter H, Bauer M, Huber R, Lollar P, Bode W. X-ray structure of clotting factor IXa: active site and module structure related to Xase activity and hemophilia B. Proc Natl Acad Sci U S A 1995; 92 (21) 9796-9800
  • 41 Pike ACW, Brzozowski AM, Roberts SM, Olsen OH, Persson E. Structure of human factor VIIa and its implications for the triggering of blood coagulation. Proc Natl Acad Sci U S A 1999; 96 (16) 8925-8930
  • 42 Loschwitz J, Olubiyi OO, Hub JS, Strodel B, Poojari CS. Computer simulations of protein-membrane systems. Prog Mol Biol Transl Sci 2020; 170: 273-403
  • 43 Case DA, Cheatham III TE, Darden T. et al. The Amber biomolecular simulation programs. J Comput Chem 2005; 26 (16) 1668-1688
  • 44 Brooks BR, Brooks III CL, Mackerell Jr AD. et al. CHARMM: the biomolecular simulation program. J Comput Chem 2009; 30 (10) 1545-1614
  • 45 Abraham MJ, Murtola T, Schulz R. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015; 1–2: 19-25
  • 46 Phillips JC, Braun R, Wang W. et al. Scalable molecular dynamics with NAMD. J Comput Chem 2005; 26 (16) 1781-1802
  • 47 Lagardère L, Jolly L-H, Lipparini F. et al. Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields. Chem Sci (Camb) 2017; 9 (04) 956-972
  • 48 Eastman P, Friedrichs MS, Chodera JD. et al. OpenMM 4: a reusable, extensible, hardware independent library for high performance molecular simulation. J Chem Theory Comput 2013; 9 (01) 461-469
  • 49 Kobayashi C, Jung J, Matsunaga Y. et al. GENESIS 1.1: a hybrid-parallel molecular dynamics simulator with enhanced sampling algorithms on multiple computational platforms. J Comput Chem 2017; 38 (25) 2193-2206
  • 50 Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 1996; 118 (45) 11225-11236
  • 51 McCammon JA, Harvey SC. Dynamics of Proteins and Nucleic Acids. Cambridge: Cambridge University Press; 1987
  • 52 Brooks CL, Karplus M, Pettitt BM. Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics. New York, NY: John Wiley & Sons; 1988
  • 53 Frenkel D, Smit B. Understanding Molecular Simulation from Algorithms to Applications. San Diego, CA: Academic Press; 2002
  • 54 Lee J, Cheng X, Swails JM. et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput 2016; 12 (01) 405-413
  • 55 Schrodinger LLC. The PyMOL Molecular Graphics System, Version 2.4. Accessed September 10, 2020 at: https://pymol.org
  • 56 Pettersen EF, Goddard TD, Huang CC. et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 2004; 25 (13) 1605-1612
  • 57 Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph 1996; 14 (01) 33-38 , 27–28
  • 58 Ohkubo YZ, Thorpe IF. Evaluating the conformational entropy of macromolecules using an energy decomposition approach. J Chem Phys 2006; 124 (02) 024910
  • 59 Marrink SJ, Corradi V, Souza PCT, Ingólfsson HI, Tieleman DP, Sansom MSP. Computational modeling of realistic cell membranes. Chem Rev 2019; 119 (09) 6184-6226
  • 60 Lyubartsev AP, Rabinovich AL. Force field development for lipid membrane simulations. Biochim Biophys Acta 2016; 1858 (10) 2483-2497
  • 61 Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 2007; 111 (27) 7812-7824
  • 62 Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale simulations of biological membranes: the challenge to understand biological phenomena in a living substance. Chem Rev 2019; 119 (09) 5607-5774
  • 63 Jagger BR, Kochanek SE, Haldar S, Amaro RE, Mulholland AJ. Multiscale simulation approaches to modeling drug-protein binding. Curr Opin Struct Biol 2020; 61: 213-221
  • 64 Izvekov S, Voth GA. A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 2005; 109 (07) 2469-2473
  • 65 Noid WG, Chu J-W, Ayton GS. et al. The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. J Chem Phys 2008; 128 (24) 244114
  • 66 Rzepiela AJ, Schäfer LV, Goga N, Risselada HJ, De Vries AH, Marrink SJ. Reconstruction of atomistic details from coarse-grained structures. J Comput Chem 2010; 31 (06) 1333-1343
  • 67 Ohkubo YZ, Pogorelov TV, Arcario MJ, Christensen GA, Tajkhorshid E. Accelerating membrane insertion of peripheral proteins with a novel membrane mimetic model. Biophys J 2012; 102 (09) 2130-2139
  • 68 Falcón-González JM, Jiménez-Domínguez G, Ortega-Blake I, Carrillo-Tripp M. Multi-phase solvation model for biological membranes: molecular action mechanism of amphotericin B. J Chem Theory Comput 2017; 13 (07) 3388-3397
  • 69 Nelsestuen GL. Enhancement of vitamin-K-dependent protein function by modification of the γ-carboxyglutamic acid domain: studies of protein C and factor VII. Trends Cardiovasc Med 1999; 9 (06) 162-167
  • 70 Soriano-Garcia M, Padmanabhan K, de Vos AM, Tulinsky A. The Ca2+ ion and membrane binding structure of the Gla domain of Ca-prothrombin fragment 1. Biochemistry 1992; 31 (09) 2554-2566
  • 71 Mizuno H, Fujimoto Z, Atoda H, Morita T. Crystal structure of an anticoagulant protein in complex with the Gla domain of factor X. Proc Natl Acad Sci U S A 2001; 98 (13) 7230-7234
  • 72 Falls LA, Furie BC, Jacobs M, Furie B, Rigby AC. The ω-loop region of the human prothrombin γ-carboxyglutamic acid domain penetrates anionic phospholipid membranes. J Biol Chem 2001; 276 (26) 23895-23902
  • 73 Huang M, Rigby AC, Morelli X. et al. Structural basis of membrane binding by Gla domains of vitamin K-dependent proteins. Nat Struct Biol 2003; 10 (09) 751-756
  • 74 Grant MA, Baikeev RF, Gilbert GE, Rigby AC. Lysine 5 and phenylalanine 9 of the factor IX ω-loop interact with phosphatidylserine in a membrane-mimetic environment. Biochemistry 2004; 43 (49) 15367-15378
  • 75 Lemmon MA. Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 2008; 9 (02) 99-111
  • 76 Zwaal RFA, Comfurius P, Bevers EM. Lipid-protein interactions in blood coagulation. Biochim Biophys Acta 1998; 1376 (03) 433-453
  • 77 Stace CL, Ktistakis NT. Phosphatidic acid- and phosphatidylserine-binding proteins. Biochim Biophys Acta 2006; 1761 (08) 913-926
  • 78 Lin L, Huai Q, Huang M, Furie B, Furie BC. Crystal structure of the bovine lactadherin C2 domain, a membrane binding motif, shows similarity to the C2 domains of factor V and factor VIII. J Mol Biol 2007; 371 (03) 717-724
  • 79 Shao C, Novakovic VA, Head JF, Seaton BA, Gilbert GE. Crystal structure of lactadherin C2 domain at 1.7A resolution with mutational and computational analyses of its membrane-binding motif. J Biol Chem 2008; 283 (11) 7230-7241
  • 80 Verdaguer N, Corbalan-Garcia S, Ochoa WF, Fita I, Gómez-Fernández JC. Ca2+ bridges the C2 membrane-binding domain of protein kinase Calpha directly to phosphatidylserine. EMBO J 1999; 18 (22) 6329-6338
  • 81 Yang Y, Shu C, Li P, Igumenova TI. Structural basis of protein kinase Cα regulation by the C-terminal tail. Biophys J 2018; 114 (07) 1590-1603
  • 82 Lü J, Pipe SW, Miao H, Jacquemin M, Gilbert GE. A membrane-interactive surface on the factor VIII C1 domain cooperates with the C2 domain for cofactor function. Blood 2011; 117 (11) 3181-3189
  • 83 Bardelle C, Furie B, Furie BC, Gilbert GE. Membrane binding kinetics of factor VIII indicate a complex binding process. J Biol Chem 1993; 268 (12) 8815-8824
  • 84 Novakovic VA, Cullinan DB, Wakabayashi H, Fay PJ, Baleja JD, Gilbert GE. Membrane-binding properties of the Factor VIII C2 domain. Biochem J 2011; 435 (01) 187-196
  • 85 Macedo-Ribeiro S, Bode W, Huber R. et al. Crystal structures of the membrane-binding C2 domain of human coagulation factor V. Nature 1999; 402 (6760): 434-439
  • 86 Pratt KP, Shen BW, Takeshima K, Davie EW, Fujikawa K, Stoddard BL. Structure of the C2 domain of human factor VIII at 1.5 A resolution. Nature 1999; 402 (6760): 439-442
  • 87 Mertens K, Meijer AB. Factors VIII and V swap fatty feet. Blood 2012; 120 (09) 1761-1763
  • 88 Kim SW, Quinn-Allen MA, Camp JT. et al. Identification of functionally important amino acid residues within the C2-domain of human factor V using alanine-scanning mutagenesis. Biochemistry 2000; 39 (08) 1951-1958
  • 89 Mollica L, Fraternali F, Musco G. Interactions of the C2 domain of human factor V with a model membrane. Proteins 2006; 64 (02) 363-375
  • 90 Wu S, Lee CJ, Pedersen LG. Conformational change path between closed and open forms of C2 domain of coagulation factor V on a two-dimensional free-energy surface. Phys Rev E Stat Nonlin Soft Matter Phys 2009; 79 (4, Pt 1): 041909
  • 91 Stoilova-McPhie S, Parmenter CDJ, Segers K, Villoutreix BO, Nicolaes GAF. Defining the structure of membrane-bound human blood coagulation factor Va. J Thromb Haemost 2008; 6 (01) 76-82
  • 92 Shen BW, Spiegel PC, Chang C-H. et al. The tertiary structure and domain organization of coagulation factor VIII. Blood 2008; 111 (03) 1240-1247
  • 93 Smith IW, d'Aquino AE, Coyle CW. et al. The 3.2 Å structure of a bioengineered variant of blood coagulation factor VIII indicates two conformations of the C2 domain. J Thromb Haemost 2020; 18 (01) 57-69
  • 94 Ngo JCK, Huang M, Roth DA, Furie BC, Furie B. Crystal structure of human factor VIII: implications for the formation of the factor IXa-factor VIIIa complex. Structure 2008; 16 (04) 597-606
  • 95 Svensson LA, Thim L, Olsen OH, Nicolaisen EM. Evaluation of the metal binding sites in a recombinant coagulation factor VIII identifies two sites with unique metal binding properties. Biol Chem 2013; 394 (06) 761-765
  • 96 Wakabayashi H, Fay PJ. Molecular orientation of Factor VIIIa on the phospholipid membrane surface determined by fluorescence resonance energy transfer. Biochem J 2013; 452 (02) 293-301
  • 97 Madsen JJ, Ohkubo YZ, Peters GH, Faber JH, Tajkhorshid E, Olsen OH. Membrane interaction of the factor VIIIa discoidin domains in atomistic detail. Biochemistry 2015; 54 (39) 6123-6131
  • 98 Neuenschwander PF, Bianco-Fisher E, Rezaie AR, Morrissey JH. Phosphatidylethanolamine augments factor VIIa-tissue factor activity: enhancement of sensitivity to phosphatidylserine. Biochemistry 1995; 34 (43) 13988-13993
  • 99 Ohkubo YZ, Morrissey JH, Tajkhorshid E. Dynamical view of membrane binding and complex formation of human factor VIIa and tissue factor. J Thromb Haemost 2010; 8 (05) 1044-1053
  • 100 Versteeg HH, Schaffner F, Kerver M. et al. Inhibition of tissue factor signaling suppresses tumor growth. Blood 2008; 111 (01) 190-199
  • 101 Lee CJ, Wu S, Bartolotti LJ, Pedersen LG. Molecular dynamic simulations of the binary complex of human tissue factor (TF1-242) and factor VIIa (TF1-242/FVIIa) on a 4:1 POPC/POPS lipid bilayer. J Thromb Haemost 2012; 10 (11) 2402-2405
  • 102 Prasad R, Sen P. Structural modulation of factor VIIa by full-length tissue factor (TF1-263): implication of novel interactions between EGF2 domain and TF. J Biomol Struct Dyn 2018; 36 (03) 621-633
  • 103 Vadivel K, Bajaj SP. Structural biology of factor VIIa/tissue factor initiated coagulation. Front Biosci 2012; 17 (07) 2476-2494
  • 104 Chen S-WW, Pellequer J-L, Schved J-F, Giansily-Blaizot M. Model of a ternary complex between activated factor VII, tissue factor and factor IX. Thromb Haemost 2002; 88 (01) 74-82
  • 105 Venkateswarlu D, Duke RE, Perera L, Darden TA, Pedersen LG. An all-atom solution-equilibrated model for human extrinsic blood coagulation complex (sTF-VIIa-Xa): a protein-protein docking and molecular dynamics refinement study. J Thromb Haemost 2003; 1 (12) 2577-2588
  • 106 Disse J, Petersen HH, Larsen KS. et al. The endothelial protein C receptor supports tissue factor ternary coagulation initiation complex signaling through protease-activated receptors. J Biol Chem 2011; 286 (07) 5756-5767
  • 107 Ruf W, Disse J, Carneiro-Lobo TC, Yokota N, Schaffner F. Tissue factor and cell signalling in cancer progression and thrombosis. J Thromb Haemost 2011; 9 (Suppl. 01) 306-315
  • 108 Pellequer J-L, Gale AJ, Getzoff ED, Griffin JH. Three-dimensional model of coagulation factor Va bound to activated protein C. Thromb Haemost 2000; 84 (05) 849-857
  • 109 Stoilova-McPhie S, Villoutreix BO, Mertens K, Kemball-Cook G, Holzenburg A. 3-Dimensional structure of membrane-bound coagulation factor VIII: modeling of the factor VIII heterodimer within a 3-dimensional density map derived by electron crystallography. Blood 2002; 99 (04) 1215-1223
  • 110 Adams TE, Hockin MF, Mann KG, Everse SJ. The crystal structure of activated protein C-inactivated bovine factor Va: Implications for cofactor function. Proc Natl Acad Sci U S A 2004; 101 (24) 8918-8923
  • 111 Villoutreix BO, Dahlbäck B. Structural investigation of the A domains of human blood coagulation factor V by molecular modeling. Protein Sci 1998; 7 (06) 1317-1325
  • 112 Autin L, Steen M, Dahlbäck B, Villoutreix BO. Proposed structural models of the prothrombinase (FXa-FVa) complex. Proteins 2006; 63 (03) 440-450
  • 113 Steen M, Tran S, Autin L, Villoutreix BO, Tholander A-L, Dahlbäck B. Mapping of the factor Xa binding site on factor Va by site-directed mutagenesis. J Biol Chem 2008; 283 (30) 20805-20812
  • 114 Zaitseva I, Zaitsev V, Card G. et al. The X-ray structure of human serum ceruloplasmin at 3.1 Å: nature of the copper centres. J Biol Inorg Chem 1996; 1 (01) 15-23
  • 115 Lee CJ, Lin P, Chandrasekaran V. et al. Proposed structural models of human factor Va and prothrombinase. J Thromb Haemost 2008; 6 (01) 83-89
  • 116 Stoilova-McPhie S, Lynch GC, Ludtke S, Pettitt BM. Domain organization of membrane-bound factor VIII. Biopolymers 2013; 99 (07) 448-459
  • 117 Dalm D, Galaz-Montoya JG, Miller JL. et al. Dimeric organization of blood coagulation factor VIII bound to lipid nanotubes. Sci Rep 2015; 5: 11212
  • 118 Perera L, Foley C, Darden TA. et al. Modeling zymogen protein C. Biophys J 2000; 79 (06) 2925-2943
  • 119 Yegneswaran S, Wood GM, Esmon CT, Johnson AE. Protein S alters the active site location of activated protein C above the membrane surface. A fluorescence resonance energy transfer study of topography. J Biol Chem 1997; 272 (40) 25013-25021
  • 120 Yegneswaran S, Smirnov MD, Safa O, Esmon NL, Esmon CT, Johnson AE. Relocating the active site of activated protein C eliminates the need for its protein S cofactor. A fluorescence resonance energy transfer study. J Biol Chem 1999; 274 (09) 5462-5468
  • 121 Wei Z, Yan Y, Carrell RW, Zhou A. Crystal structure of protein Z-dependent inhibitor complex shows how protein Z functions as a cofactor in the membrane inhibition of factor X. Blood 2009; 114 (17) 3662-3667
  • 122 Huang X, Dementiev A, Olson ST, Gettins PGW. Basis for the specificity and activation of the serpin protein Z-dependent proteinase inhibitor (ZPI) as an inhibitor of membrane-associated factor Xa. J Biol Chem 2010; 285 (26) 20399-20409
  • 123 Armstrong SA, Husten EJ, Esmon CT, Johnson AE. The active site of membrane-bound meizothrombin. A fluorescence determination of its distance from the phospholipid surface and its conformational sensitivity to calcium and factor Va. J Biol Chem 1990; 265 (11) 6210-6218
  • 124 Chandrasekaran V, Lee CJ, Lin P, Duke RE, Pedersen LG. A computational modeling and molecular dynamics study of the Michaelis complex of human protein Z-dependent protease inhibitor (ZPI) and factor Xa (FXa). J Mol Model 2009; 15 (08) 897-911
  • 125 Mast AE. Tissue factor pathway inhibitor: multiple anticoagulant activities for a single protein. Arterioscler Thromb Vasc Biol 2016; 36 (01) 9-14
  • 126 Chowdary P. Inhibition of tissue factor pathway inhibitor (TFPI) as a treatment for haemophilia: rationale with focus on concizumab. Drugs 2018; 78 (09) 881-890
  • 127 Morrissey JH, Choi SH, Smith SA. Polyphosphate: an ancient molecule that links platelets, coagulation, and inflammation. Blood 2012; 119 (25) 5972-5979
  • 128 Mailer RKW, Hänel L, Allende M, Renné T. Polyphosphate as a target for interference with inflammation and thrombosis. Front Med (Lausanne) 2019; 6: 76
  • 129 Riewald M, Ruf W. Mechanistic coupling of protease signaling and initiation of coagulation by tissue factor. Proc Natl Acad Sci U S A 2001; 98 (14) 7742-7747
  • 130 Cheng RKY, Fiez-Vandal C, Schlenker O. et al. Structural insight into allosteric modulation of protease-activated receptor 2. Nature 2017; 545 (7652): 112-115
  • 131 Zhang C, Srinivasan Y, Arlow DH. et al. High-resolution crystal structure of human protease-activated receptor 1. Nature 2012; 492 (7429): 387-392
  • 132 Muller MP, Wang Y, Morrissey JH, Tajkhorshid E. Lipid specificity of the membrane binding domain of coagulation factor X. J Thromb Haemost 2017; 15 (10) 2005-2016
  • 133 Persson E, Madsen JJ, Olsen OH. The length of the linker between the epidermal growth factor-like domains in factor VIIa is critical for a productive interaction with tissue factor. Protein Sci 2014; 23 (12) 1717-1727
  • 134 Autin L, Miteva MA, Lee WH, Mertens K, Radtke K-P, Villoutreix BO. Molecular models of the procoagulant factor VIIIa-factor IXa complex. J Thromb Haemost 2005; 3 (09) 2044-2056
  • 135 Lechtenberg BC, Murray-Rust TA, Johnson DJD. et al. Crystal structure of the prothrombinase complex from the venom of Pseudonaja textilis . Blood 2013; 122 (16) 2777-2783
  • 136 McCallum CD, Hapak RC, Neuenschwander PF, Morrissey JH, Johnson AE. The location of the active site of blood coagulation factor VIIa above the membrane surface and its reorientation upon association with tissue factor. A fluorescence energy transfer study. J Biol Chem 1996; 271 (45) 28168-28175
  • 137 McCallum CD, Su B, Neuenschwander PF, Morrissey JH, Johnson AE. Tissue factor positions and maintains the factor VIIa active site far above the membrane surface even in the absence of the factor VIIa Gla domain. A fluorescence resonance energy transfer study. J Biol Chem 1997; 272 (48) 30160-30166
  • 138 Lee CJ, Wu S, Pedersen LG. A proposed ternary complex model of prothrombinase with prothrombin: protein-protein docking and molecular dynamics simulations. J Thromb Haemost 2011; 9 (10) 2123-2126
  • 139 Perera L, Darden TA, Pedersen LG. Modeling human zymogen factor IX. Thromb Haemost 2001; 85 (04) 596-603
  • 140 Orban T, Kalafatis M, Gogonea V. Completed three-dimensional model of human coagulation factor va. Molecular dynamics simulations and structural analyses. Biochemistry 2005; 44 (39) 13082-13090
  • 141 Chaves RC, Dahmane S, Odorico M, Nicolaes GAF, Pellequer J-L. Factor Va alternative conformation reconstruction using atomic force microscopy. Thromb Haemost 2014; 112 (06) 1167-1173
  • 142 Du J, Wichapong K, Hackeng KM, Nicolaes GAF. Molecular simulation studies of human coagulation factor VIII C domain-mediated membrane binding. Thromb Haemost 2015; 113 (02) 373-384
  • 143 Fay PJ. Activation of factor VIII and mechanisms of cofactor action. Blood Rev 2004; 18 (01) 1-15
  • 144 Oslakovic C, Krisinger MJ, Andersson A, Jauhiainen M, Ehnholm C, Dahlbäck B. Anionic phospholipids lose their procoagulant properties when incorporated into high density lipoproteins. J Biol Chem 2009; 284 (09) 5896-5904
  • 145 Morrissey Lab, University of Michigan. X-Ray crystal structures and NMR structures of tissue factor, factor VII, factor VIIa, TFPI, and antibodies to these proteins. Accessed September 10, 2020 at: https://tf7.org/structures/
  • 146 Colina CM, Venkateswarlu D, Duke R, Perera L, Pedersen LG. What causes the enhancement of activity of factor VIIa by tissue factor?. J Thromb Haemost 2006; 4 (12) 2726-2729
  • 147 Waters EK, Yegneswaran S, Morrissey JH. Raising the active site of factor VIIa above the membrane surface reduces its procoagulant activity but not factor VII autoactivation. J Biol Chem 2006; 281 (36) 26062-26068
  • 148 Mutucumarana VP, Duffy EJ, Lollar P, Johnson AE. The active site of factor IXa is located far above the membrane surface and its conformation is altered upon association with factor VIIIa. A fluorescence study. J Biol Chem 1992; 267 (24) 17012-17021
  • 149 Husten EJ, Esmon CT, Johnson AE. The active site of blood coagulation factor Xa. Its distance from the phospholipid surface and its conformational sensitivity to components of the prothrombinase complex. J Biol Chem 1987; 262 (27) 12953-12961
  • 150 Qureshi SH, Yang L, Yegneswaran S, Rezaie AR. FRET studies with factor X mutants provide insight into the topography of the membrane-bound factor X/Xa. Biochem J 2007; 407 (03) 427-433