Skip to main content
Log in

Multicapillary Systems in Analytical Chemistry

  • REVIEWS
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The current state of scientific and practical results of the application of polycapillary (multichannel) systems to various areas of analytical chemistry is considered. Polycapillary systems consist of a matrix of single capillaries, which can have different geometries and sizes (from 10 nm to n × 102 µm). They are made of various materials based on silica, silicate glasses, and organic polymers. The main types of polycapillary systems, their production methods, and achievements and prospects of their use in various areas of analytical chemistry are considered. Special attention is paid to the use of microstructured optical fibers in chemo- and biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Fateev, V.N., Alexeeva, O.K., Korobtsev, S.V., Seregina, E.A., Fateeva, T.V., Grigorev, A.S., and Aliyev, A.S., Chem. Probl., 2018, no. 4, p. 453.

  2. Chung, K.M., Dong, L., Lu, C., and Tam, H.Y., Opt. Express, 2011, vol. 19, p. 12664.

    Article  CAS  PubMed  Google Scholar 

  3. Arjmand, M. and Talebzadeh, R., Optoelectron. Adv. Mater. Rapid Commun., 2015, vol. 9, p. 32.

    Google Scholar 

  4. Fasihi, K., J. Lightwave Technol., 2014, vol. 32, p. 3126.

    Article  Google Scholar 

  5. Zolotov, Yu.A., J. Anal. Chem., 2008, vol. 63, no. 3, p. 207.

    Article  CAS  Google Scholar 

  6. Currivan, S., Upadhyay, N., and Paull, B., TrAC, Trends Anal. Chem., 2018, vol. 102, p. 322.

    Article  CAS  Google Scholar 

  7. Pidenko, S.A., Burmistrova, N.A., Shuvalov, A.A., Chibrova, A.A., Skibina, Y.S., and Goryacheva, I.Y., Anal. Chim. Acta, 2018, vol. 1019, p. 14.

    Article  CAS  PubMed  Google Scholar 

  8. Skibina, Yu.S., Tuchin, V.V., Beloglazov, V.I., Shtainmaier, G., Betge, I.L., Wedell, R., and Langhoff, N., Quantum Electron., 2011, vol. 41, no. 4, p. 284.

    Article  CAS  Google Scholar 

  9. Villatoro, J. and Zubia, J., Opt. Laser Technol., 2016, vol. 78, p. 67.

    Article  Google Scholar 

  10. Pinto, A.M.R. and Lopez-Amo, M., J. Sens., 2012, vol. 2012, 598178.

    Article  Google Scholar 

  11. Fan, X. and White, I.M., Nat. Photonics, 2011, vol. 5, no. 10, p. 591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. NKT Photonics. http://www.nktphotonics.com. Accessed December 8, 2020.

  13. Nanostructured Glass Technology. https://nano-glass.ru. Accessed December 8, 2020.

  14. Photonics Bretagne. http://www.photonics-bretagne.com. Accessed December 8, 2020.

  15. Broadway, C., Min, R., Leal-Junior, A.G., Marques, C., and Caucheteur, C., J. Lightwave Technol., 2019, vol. 37, p. 2605.

    Article  CAS  Google Scholar 

  16. Calcerrada, M., García-Ruiz, C., and González-Herráez, M., Laser Photonics Rev., 2015, vol. 9, no. 6, p. 604.

    Article  CAS  Google Scholar 

  17. Talataisong, W., Ismaeel, R., Beresna, M., and Brambilla, G., Sensors, 2019, vol. 19, no. 16, p. 3449.

    Article  CAS  PubMed Central  Google Scholar 

  18. Skibina, Yu.S., Beloglazov, V.I., Tuchin, V.V., Kapustin, D.V., and Prostyakova, A.I., RF Patent 2547597, 2015.

  19. Knight, J.C., Birks, T.A., Russell, P.S.J., and Atkin, D.M., Opt. Lett., 1996, vol. 21, no. 19, p. 1547.

    Article  CAS  PubMed  Google Scholar 

  20. Russell, P., Science, 2003, vol. 299, no. 5605, pp. 358–362.

    Article  CAS  PubMed  Google Scholar 

  21. Russell, P.S.J., J. Lightwave Technol., 2006, vol. 24, no. 12, p. 4729.

    Article  Google Scholar 

  22. Lægsgaard, J. and Bjarklev, A., J. Am. Ceram. Soc., 2006, vol. 89, no. 1, p. 2.

    Article  CAS  Google Scholar 

  23. Bravo, M., Pinto, A.M.R., Lopez-Amo, M., Kobelke, J., and Schuster, K., Opt. Lett., 2012, vol. 37, no. 2, p. 202.

    Article  CAS  PubMed  Google Scholar 

  24. Petersen, C.R., Møller, U., Kubat, I., Zhou, B., Dupont, S., Ramsay, J., Benson, T., Sujecki, S., Abdel-Moneim, N., Tang, Z., Furniss, D., Seddon, A., and Bang, O., Nat. Photonics, 2014, vol. 8, p. 830.

    Article  CAS  Google Scholar 

  25. Vienne, G., Xu, Y., Jakobsen, C., Deyerl, H.-J., Jensen, J.B., Sorensen, T., Hansen, T.P., Huang, Y., Terrel, M., Lee, R.K., Mortensen, N.A., Broeng, J., Simonsen, H., Bjarklev, A., and Yariv, A., Opt. Express, 2004, vol. 12, p. 3500.

    Article  PubMed  Google Scholar 

  26. Cerqueira, S., Jr., Luan, F., Cordeiro, C.M.B., George, F.K., and Knight, J.C., Opt. Express, 2006, vol. 14, p. 926.

    Article  Google Scholar 

  27. Bjarklev, A., Broeng, J., and Bjarklev, A., in Photonic Crystal Fibres, Boston: MA: Springer, 2003, p. 115

    Book  Google Scholar 

  28. Zhang, P., Zhang, J., Yang, P., Dai, S., Wang, X., and Zhang, W., Opt. Fiber Technol., 2015, vol. 26, p. 176.

    Article  CAS  Google Scholar 

  29. Becker, M., Werner, M., Fitzau, O., Esser, D., Kobelke, J., Loren, A., Schwuchow, A., Rothhardt, M., Schuster, K., Hoffmann, D., and Bartelt, H., Opt. Fiber Technol., 2013, vol. 19, no. 5, p. 482.

    Article  CAS  Google Scholar 

  30. Ebendorff-Heidepriem, H. and Monro, T.M., Opt. Mater. Express, 2012, vol. 2, no. 3, p. 304.

    Article  Google Scholar 

  31. El Hamzaoui, H., Bigot, L., Bouwmans, G., Razdobreev, I., Bouazaoui, M., and Capoen, B., Opt. Mater. Express, 2011, vol. 1, no. 2, p. 234.

    Article  CAS  Google Scholar 

  32. Coulombier, Q., Brilland, L., Houizot, P., Nguyen, T.N., Chartier, T., Renversez, G., Monteville, A., Fatome, J., Smektala, F., Pain, T., Orain, H., Sangleboeuf, J.-C., and Trolès, J., Proc. SPIE, 2010, vol. 7598, p. 75980.

    Article  CAS  Google Scholar 

  33. Van Eijkelenborg, M.A., Argyros, A., Barton, G., Bassett, I.M., Fellew, M., Henry, G., Issa, N.A., Large, M.C.J., Manos, S., Padden, W., Poladian, L., and Zagari, J., Opt. Fiber Technol., 2003, vol. 9, no. 4, p. 199.

    Article  CAS  Google Scholar 

  34. Zubia, J. and Arrue, J., Opt. Fiber Technol., 2001, vol. 7, p. 101.

    Article  Google Scholar 

  35. Fasano, A., Woyessa, G., Stajanca, P., Markos, C., Stefani, A., Nielsen, K., Rasmussen, H.K., Krebber, K., and Bang, O., Opt. Mater. Express, 2016, vol. 6, p. 649.

    Article  CAS  Google Scholar 

  36. Beloglazov, V.I., Skibina, N.B., Chainikov, M.V., Langhoff, N., Bjeoumikhov, A., Bjeoumikhova, Z., Tuchin, V.V., Skibina, Yu.S., and Wedel, R., J. X-Ray Sci. Technol., 2005, vol. 13, no. 4, p. 178.

    Google Scholar 

  37. Islam, M., Ali, M.M., Lai, M.H., Lim, K.S., and Ahmad, H., Sensors, 2014, vol. 14, no. 4, p. 7451.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Warren-Smith, S.C., Schartner, E.P., Nguyen, L.V., Otten, D.E., Yu, Z., Lancaster, D.G., and Ebendorff-Heidepriem, H., in Applied Industrial Optics: Spectroscopy, Imaging and Metrology, Washington, DC: Opt. Soc. Am., 2019.

    Google Scholar 

  39. Liu, X., Jiang, M., Sui, Q., and Geng, X., J. Mod. Opt., 2016, vol. 63, no. 17, p. 1668.

    Article  CAS  Google Scholar 

  40. Yang, X., Zhao, Q., Qi, X., Long, Q., Yu, W., and Yuan, L., Sens. Actuators, A, 2018, vol. 272, p. 23.

    Article  CAS  Google Scholar 

  41. Zhao, Y., Li, X.G., Cai, L., and Yang, Y., Sens. Actuators, B, 2015, vol. 221, p. 406.

    Article  CAS  Google Scholar 

  42. Martan, T., Nemecek, T., Komanec, M., Ahmad, R., and Zvanovec, S., Appl. Opt., 2017, vol. 56, no. 9, p. 2388.

    Article  CAS  PubMed  Google Scholar 

  43. Chen, C., Wu, W., and Wang, J., Microsyst. Technol., 2017, vol. 23, p. 429.

    Article  CAS  Google Scholar 

  44. An, G., Li, S., An, Y., Wang, H., and Zhang, X., Opt. Commun., 2017, vol. 405, p. 143.

    Article  CAS  Google Scholar 

  45. Wang, X.D. and Wolfbeis, O.S., Anal. Chem., 2019, vol. 92, no. 1, p. 397.

    Article  PubMed  CAS  Google Scholar 

  46. Rifat, A.A., Ahmed, K., Asaduzzaman, S., Paul, B.K., and Ahmed, R., in Computational Photonic Sensors, Cham, Switzerland: Springer, 2019, p. 287.

    Google Scholar 

  47. Asaduzzaman, S. and Ahmed, K., Sens. Bio-Sens. Res., 2016, vol. 10, p. 20.

    Article  Google Scholar 

  48. Lopez-Torres, D., Elosua, C., and Arregui, F.J., Sensors, 2020, vol. 20, no. 9, p. 2555.

    Article  CAS  PubMed Central  Google Scholar 

  49. Jin, W., Cao, Y., Yang, F., and Ho, H.L., Nat. Commun., 2015, vol. 6, no. 1, p. 1.

    Google Scholar 

  50. Zhang, H., Duan, L., Shi, W., Sheng, Q., Lu, Y., and Yao, J., Sens. Actuators, B, 2017, vol. 247, p. 124.

    Article  CAS  Google Scholar 

  51. He, Q., Dang, P., Liu, Z., Zheng, C., and Wang, Y., Opt. Quantum Electron., 2017, vol. 49, no. 3, p. 115.

    Article  CAS  Google Scholar 

  52. Yang, J., Che, X., Shen, R., Wang, C., Li, X., and Chen, W., Opt. Express, 2017, vol. 25, no. 17, p. 20258.

    Article  CAS  PubMed  Google Scholar 

  53. Yang, J., Zhou, L., Che, X., Huang, J., Li, X., and Chen, W., Sens. Actuators, B, 2016, vol. 235, p. 717.

    Article  CAS  Google Scholar 

  54. Shrivastav, A.M., Sharma, G., Rathore, A.S., and Jha, R., ACS Photonics, 2018, vol. 5, no. 11, p. 4402.

    Article  CAS  Google Scholar 

  55. Feng, X., Feng, W., Tao, C., Deng, D., Qin, X., and Chen, R., Sens. Actuators, B, 2017, vol. 247, p. 540.

    Article  CAS  Google Scholar 

  56. Wang, J., Yang, J., Zou, D., Yang, J., Qiao, G., Wang, H., and Wang, R., Opt. Fiber Technol., 2019, vol. 52, 101941.

    Article  CAS  Google Scholar 

  57. Liu, H., Wang, M., Wang, Q., Li, H., Ding, Y., and Zhu, C., Opt. Fiber Technol., 2018, vol. 45, p. 1.

    Article  CAS  Google Scholar 

  58. Arasu, P.T., Noor, A.S.M., Shabaneh, A.A., Yaacob, M.H., Lim, H.N., and Mahdi, M.A., Opt. Commun., 2016, vol. 380, p. 260.

    Article  CAS  Google Scholar 

  59. Yang, X.C., Lu, Y., Wang, M.T., and Yao, J.Q., Opt. Commun., 2016, vol. 359, p. 279.

    Article  CAS  Google Scholar 

  60. Burmistrova, N.A., Pidenko, P.S., Pidenko, S.A., Skibina, Y.S., and Monakhova, Y.B., Anal. Bioanal. Chem., 2019, vol. 411, p. 7055.

    Article  CAS  PubMed  Google Scholar 

  61. Yan, D., Popp, J., Pletz, M.W., and Frosch, T., ACS Photonics, 2017, vol. 4, no. 1, p. 138.

    Article  CAS  Google Scholar 

  62. Khetani, A., Momenpour, A., Alarcon, E.I., and Anis, H., Biomed. Opt. Express, 2015, vol. 6, no. 11, p. 4599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gong, T., Cui, Y., Goh, D., Voon, K.K., Shum, P.P., Humbert, G., Auguste, J.-L., Dinh, X.-Q., Yong, K.-T., and Olivo, M., Biosens. Bioelectron., 2015, vol. 64, p. 227.

    Article  CAS  PubMed  Google Scholar 

  64. Ding, L., Li, Z., Ding, Q., Shen, X., Yuan, Y., and Huang, J., Sens. Actuators, B, 2018, vol. 260, p. 763.

    Article  CAS  Google Scholar 

  65. Heng, S., Nguyen, M.-C., Kostecki, R., Monro, T.M., and Abell, A.D., RSC Adv., 2013, vol. 3, no. 22, p. 8308.

    Article  CAS  Google Scholar 

  66. Heng, S., McDevitt, C.A., Kostecki, R., Morey, J.R., Eijkelkamp, B.A., Ebendorff-Heidepriem, H., Monro, T., and Abell, A.D., ACS Appl. Mater. Interfa-ces, 2016, vol. 8, no. 20, p. 12727.

    Article  CAS  Google Scholar 

  67. Bachhuka, A., Heng, S., Vasilev, K., Kostecki, R., Abell, A., and Ebendorff-Heidepriem, H., Sensors, 2019, vol. 19, p. 1829.

    Article  CAS  PubMed Central  Google Scholar 

  68. Ding, L., Ruan, Y., Li, T., Huang, J., Warren-Smith, S.C., Ebendorff-Heidepriem, H., and Monro, T.M., Sens. Actuators, B, 2018, vol. 273, p. 9.

    Article  CAS  Google Scholar 

  69. Yang, J., Shen, R., Yan, P., Liu, Y., Li, X., Zhang, P., and Chen, W., Sens. Actuators, B, 2020, vol. 306, p. 127585.

    Article  CAS  Google Scholar 

  70. Shukla, S.K., Kushwaha, C.S., Guner, T., and Demir, M.M., Opt. Laser Technol., 2019, vol. 115, p. 404.

    Article  CAS  Google Scholar 

  71. Pawar, D. and Kale, S.N., Microchim. Acta, 2019, vol. 186, no. 4, p. 253.

    Article  CAS  Google Scholar 

  72. Hu, D.J.J. and Ho, H.P., Adv. Opt. Photonics, 2017, vol. 9, no. 2, p. 257.

    Article  Google Scholar 

  73. Zhao, Y., Deng, Z.Q., and Li, J., Sens. Actuators, B, 2014, vol. 202, p. 557.

    Article  CAS  Google Scholar 

  74. Rifat, A.A., Ahmed, R., Yetisen, A.K., Butt, H., Sabouri, A., Mahdiraji, G.A., Yun, S.H., and Adikan, F.M., Sens. Actuators, B, 2017, vol. 243, p. 311.

    Article  CAS  Google Scholar 

  75. Dinish, U.S., Beffara, F., Humbert, G., Auguste, J.L., and Olivo, M., J. Biophotonics, 2019.

  76. Markin, A.V., Markina, N.E., and Goryacheva, I.Y., TrAC, Trends Anal. Chem., 2017, vol. 201788, p. 185.

    Article  CAS  Google Scholar 

  77. Ermatov, T., Skibina, J.S., Tuchin, V.V., and Gorin, D.A., Materials, 2020, vol. 13, no. 4, p. 921.

    Article  CAS  PubMed Central  Google Scholar 

  78. Calcerrada, M., Cunningham, B.T., Zhang, M., Zhuo, Y., Kwon, L., and Race, C., IEEE Sens. J., 2016, vol. 16, p. 3349.

    Article  Google Scholar 

  79. Chibrova, A.A., Shuvalov, A.A., Skibina, Y.S., Pidenko, P.S., Pidenko, S.A., Burmistrova, N.A., and Goryacheva, I., Opt. Mater., 2017, vol. 73, p. 423.

    Article  CAS  Google Scholar 

  80. Schartner, E.P., Tsiminis, G., Henderson, M.R., Warren-Smith, S.C., and Monro, T.M., Opt. Express, 2016, vol. 24, p. 18541.

    Article  CAS  PubMed  Google Scholar 

  81. Li, X., Nguyen, L.V., Zhao, Y., Ebendorff-Heidepriem, H., and Warren-Smith, S.C., Sens. Actuators, B, 2018, vol. 269, p. 103.

    Article  CAS  Google Scholar 

  82. Gao, S., Sun, L.P., Li, J., Jin, L., Ran, Y., Huang, Y., and Guan, B.O., Opt. Express, 2017, vol. 25, no. 12, p. 13305.

    Article  CAS  PubMed  Google Scholar 

  83. Huang, Y., Yu, B., Guo, T., and Guan, B.O., RSC Adv., 2017, vol. 7, no. 22, p. 13177.

    Article  CAS  Google Scholar 

  84. Gonçalves, H.M.R., Moreira, L., Pereira, L., Jorge, P., Gouveia, C., Martins-Lopes, P., and Fernandes, J.R., Biosens. Bioelectron., 2016, vol. 84, p. 30.

    Article  PubMed  CAS  Google Scholar 

  85. Arjmand, M., Saghafifar, H., Alijanianzadeh, M., and Soltanolkotabi, M., Sens. Actuators, B, 2017, vol. 249, p. 523.

    Article  CAS  Google Scholar 

  86. Bertucci, A., Manicardi, A., Candiani, A., Giannetti, S., Cucinotta, A., Spoto, G., Konstantaki, M., Pissadakis, S., Selleri, S., and Corradini, R., Biosens. Bioelectron., 2015, vol. 63, p. 248.

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, Y., Wang, F., Qian, S., Liu, Z., Wang, Q., Gu, Y., Wu, Z., Jing, Z., Sun, C., and Peng, W., Sensors, 2017, vol. 17, p. 2259.

    Article  PubMed Central  CAS  Google Scholar 

  88. Wang, Q. and Wang, B., Opt. Laser Technol., 2018, vol. 107, p. 210.

    Article  CAS  Google Scholar 

  89. Hsieh, M.C., Chiu, Y.H., Lin, S.F., Chang, J.Y., Chang, C.O., and Chiang, H.K., Sensors, 2015, vol. 15, p. 3565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Khetani, A., Momenpour, A., Alarcon, E.I., and Anis, H., Biomed. Opt. Express, 2015, vol. 6, p. 4599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gong, T., Cui, Y., Goh, D., Voon, K.K., Shum, P.P., Humbert, G., Auguste, J.-L., Dinh, X.-Q., Yong, K.-T., and Olivo, M., Biosens. Bioelectron., 2015, vol. 64, p. 227.

    Article  CAS  PubMed  Google Scholar 

  92. Gong, T., Zhang, N., Kong, K.V., Goh, D., Ying, C., Auguste, J.L., Shum, P.P., Wei, L., Humbert, G., Yong, K.-T., and Olivo, M., J. Biophotonics, 2016, vol. 9, p. 32.

    Article  CAS  PubMed  Google Scholar 

  93. Barozzi, M., Manicardi, A., Vannucci, A., Candiani, A., Sozzi, M., Konstantaki, M., Pissadakis, S., Corradini, R., Selleri, S., and Cucinotta, A., J. Lightwave Technol., 2017, vol. 35, no. 16, p. 3461.

    Article  CAS  Google Scholar 

  94. Sun, D., Guo, T., and Guan, B.-O., J. Lightwave Technol., 2017, vol. 35, p. 3354.

    Article  Google Scholar 

  95. Sun, Q., Luo, H., Luo, H., Lai, M., Liu, D., and Zhang, L., Opt. Express, 2015, vol. 23, p. 12777.

    Article  CAS  PubMed  Google Scholar 

  96. Mametov, R., Ratiu, I.A., Monedeiro, F., Ligor, T., and Buszewski, B., Crit. Rev. Anal. Chem., 2019, p. 1.

  97. Łobiński, R., Sidelnikov, V., Patrushev, Y., Rodriguez, I., and Wasik, A., TrAC, Trends Anal. Chem., 1999, vol. 18, p. 449.

    Article  Google Scholar 

  98. Sidel’nikov, V.N., Lab. Proizvod., 2019, vol. 3, no. 7, p. 114.

    Google Scholar 

  99. Sidel’nikov, V.N., Lab. Proizvod., 2019, vol. 4, no. 8, p. 148.

    Google Scholar 

  100. Moskvin, L.N. and Rodinkov, O.V., J. Anal. Chem., 2019, vol. 74, no. 10, p. 955.

    Article  CAS  Google Scholar 

  101. Daley, A.B., Wright, R.D., and Oleschuk, R.D., Anal. Chim. Acta, 2011, vol. 690, p. 253.

    Article  CAS  PubMed  Google Scholar 

  102. Sidelnikov, V.N., Patrushev, Y.V., and Belov, Y.P., J. Chromatogr. A, 2006, vol. 1101, p. 315.

    Article  CAS  PubMed  Google Scholar 

  103. Knob, R., Kulsing, C., Boysen, R.I., Macka, M., and Hearn, M.T., TrAC, Trends Anal. Chem., 2015, vol. 67, p. 16.

    Article  CAS  Google Scholar 

  104. Shakeel, H. and Agah, M., J. Microelectromech. Syst., 2013, vol. 22, no. 1, p. 62.

    Article  CAS  Google Scholar 

  105. Baldin, M.N. and Gruznov, V.M., J. Anal. Chem., 2013, vol. 68, no. 11, p. 1002.

    Article  CAS  Google Scholar 

  106. Gruznov, V.M., Baldin, M.N., Pryamov, M.V., and Maksimov, E.M., J. Anal. Chem., 2017, vol. 72, no. 11, p. 1155.

    Article  CAS  Google Scholar 

  107. Naida, O.O., Rudenko, B.A., Khamizov, R.Kh., and Kumakhov, M.A., J. Anal. Chem., 2009, vol. 64, no. 7, p. 721.

    Article  CAS  Google Scholar 

  108. Lam, S.C., Rodriguez, E.S., Haddad, P.R., and Paull, B., Analyst, 2019, vol. 144, no. 11, p. 3464.

    Article  CAS  PubMed  Google Scholar 

  109. Tarongoy, F.M., Haddad, P.R., Boysen, R.I., Hearn, M.T., and Quirino, J.P., Electrophoresis, 2016, vol. 37, no. 1, p. 66.

    Article  CAS  PubMed  Google Scholar 

  110. Ladisch, M. and Zhang, L., Anal. Bioanal. Chem., 2016, vol. 408, p. 6871.

    Article  CAS  PubMed  Google Scholar 

  111. Kucherenko, E.V., Kanat’eva, A.Yu., Kurganov, A.A., Borisov, R.S., and Pirogov, A.V., Sorbtsionnye Khromatogr. Protsessy, 2019, vol. 19, no. 6, p. 645.

    Google Scholar 

  112. Shiryaeva, V.E., Popova, T.P., Korolev, A.A., Kanat’eva, A.Yu., and Kurganov, A.A., Russ. J. Phys. Chem. A, 2020, vol. 94, no. 9, p. 1930.

    Article  Google Scholar 

  113. Svec, F. and Lv, Y., Anal. Chem., 2015, vol. 87, no. 1, p. 250.

    Article  CAS  PubMed  Google Scholar 

  114. Patrushev, Yu.V., Nikolaeva, O.A., and Sidelnikov, V.N., J. Anal. Chem., 2010, vol. 65, no. 11, p. 1129.

    Article  CAS  Google Scholar 

  115. Khamizov, R.Kh., Gruzdeva, A.N., Tokmachev, M.G., Tsizin, G.I., Tikhonov, N.A., and Kumakhov, M.A., J. Anal. Chem., 2009, vol. 64, no. 9, p. 916.

    Article  CAS  Google Scholar 

  116. Pidenko, P.S., Pidenko, S.A., Skibina, Y.S., Zacharevich, A.M., Drozd, D.D., Goryacheva, I.Y., and Burmistrova, N.A., Anal. Bioanal. Chem., 2020, vol. 412, p. 6509.

    Article  CAS  PubMed  Google Scholar 

  117. Kumakhov, M.A., RF Patent 2096353, 1997.

  118. Kumakhov, M.A., X-Ray Spectrom., 2000, vol. 29, p. 343.

    Article  Google Scholar 

  119. Kumakhov, M.A., RF Patent 2348996, 2009.

  120. Gibson, W.M., X-ray Spectrom., 2003, vol. 32, no. 3, p. 258.

    Article  CAS  Google Scholar 

  121. Bolotokov, A., Zaitsev, D., Lyuttsau, A., and Shcherbakov, A., Analitika. 2012, no. 4(5), p. 14.

  122. Kumakhov, A.A. and Bolotokov, A.A., Gorn. Inf.-Anal. Byull. (Nauchno-Tekh. Zh.), 2014, no. 10, p. 356.

  123. Nikolaev, V.I. and Chizhova, E.V., Nauchn. Priborostr., 2011, vol. 21, no. 2, p. 3.

    CAS  Google Scholar 

  124. Sun, X., Zhang, X., Wang, Y., Shao, S., Li, Y., Peng, S., Liu, Z., and Sun, T., Spectrochim. Acta, Part B, 2020, vol. 165, p. 105770.

    Article  CAS  Google Scholar 

  125. Turyanskiy, A.G., Gizha, S.S., Senkov, V.M., and Stanishevskiy, Y.M., X-Ray Spectrom., vol. 46, no. 6, p. 548.

  126. Kayhko, M., Laitinen, M., Arstila, K., Maasilta, I.J., and Sajavaara, T., Nucl. Instrum. Methods Phys. Res., Sect. B, 2019, vol. 447, p. 59.

    CAS  Google Scholar 

  127. Hampai, D., Cherepennikov, Y.M., Liedl, A., Cappuccio, G., Capitolo, E., Iannarelli, M., Azzuttia, C., Gladkikhe, Yu.P., Marcelli, A., and Dabagov, S.B., J. Instrum., 2018, vol. 13, C04024.

    Article  Google Scholar 

  128. Guglielmotti, V., Hampai, D., Micheli, L., Mazzuca, C., Redi, M., Gasbarri, E., and Dabagov, S.B., Proc. SPIE, 2020, vol. 11491, p. 114910.

    Google Scholar 

  129. Vernekohl, D., Ahmad, M., Dai, X., Zhao, W., Cheng, K., and Xing, L., Med. Phys., 2019, vol. 46, p. 5696.

    Article  PubMed  Google Scholar 

  130. Bolotokov, A.A., Gruzdeva, A.N., Khamizov, R.Kh., and Kumakhov, M.A., J. Anal. Chem., 2014, vol. 69, no. 8, p. 728.

    Article  CAS  Google Scholar 

  131. Takano, A., Maehata, K., Iyomoto, N., Hara, T., Mitsuda, K., Yamasaki, N., and Tanaka, K., JPS Conf., Proc. Int. Symp. on Radiation Detectors and Their Uses (ISRD2016), 2016, vol. 11, 030003.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 18-29-08033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Burmistrova.

Additional information

Translated by V. Makhlyarchuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burmistrova, N.A., Pidenko, P.S., Presnyakov, K.Y. et al. Multicapillary Systems in Analytical Chemistry. J Anal Chem 76, 785–796 (2021). https://doi.org/10.1134/S1061934821050087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934821050087

Keywords:

Navigation