Skip to main content
Log in

Inverse scattering transform and multiple high-order pole solutions for the Gerdjikov–Ivanov equation under the zero/nonzero background

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this article, the inverse scattering transform is considered for the Gerdjikov–Ivanov equation with zero and non-zero boundary conditions by a matrix Riemann–Hilbert (RH) method. The formula of the soliton solutions is established by Laurent expansion to the RH problem. The method we used is different from computing solution with simple poles since the residue conditions here are hard to be obtained. The formula of multiple soliton solutions with one high-order pole and N multiple high-order poles are obtained, respectively. The dynamical properties and characteristic for the high-order pole solutions are further analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  Google Scholar 

  2. Ablowitz, M.J., Clarkson, P.A.: Soliton. Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  3. Yang, J.K.: Nonlinear Waves in Integrable and Nonintegrable Systems. Soc Indus Appl Math, Philadelphia (2010)

    Book  Google Scholar 

  4. Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Ann. Math. 137, 295–368 (1993)

    Article  MathSciNet  Google Scholar 

  5. Biondini, G., Kovac̆ic̆, G.: Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 55, 1–22 (2014)

    Article  Google Scholar 

  6. Pichler, M., Biondini, G.: On the focusing non-linear Schrödinger equation with non-zero boundary conditions and double poles. IMA J. Appl. Math. 82, 131–151 (2017)

    Article  MathSciNet  Google Scholar 

  7. Biondini, G., Kraus, D.: Inverse scattering transform for the defocusing Manakov system with nonzero boundary conditions. SIAM J. Math. Anal. 47, 706–757 (2015)

    Article  MathSciNet  Google Scholar 

  8. Prinari, B., Ablowitz, M.J., Biondini, G.: Inverse scattering transform for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions. J. Math. Phys. 47, 1–32 (2006)

    Article  Google Scholar 

  9. Biondini, G., Kraus, D.K., Prinari, B.: The three-component defocusing nonlinear Schrödinger equation with nonzero boundary conditions. Commun. Math. Phys. 348, 475–533 (2016)

    Article  Google Scholar 

  10. Bilman, D., Buckingham, R.: Large-order asymptotics for multiple-pole solitons of the focusing nonlinear Schr\(\ddot{o}\)dinger equation. J. Nonlinear Sci. 29, 2185–2229 (2019)

    Article  MathSciNet  Google Scholar 

  11. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulating waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972)

    Google Scholar 

  12. Kodama, Y., Hasegawa, A.: Nonlinear pulse propagation in a monomode dielectric guide. IEEE J. Quantum Electr. 23, 510–524 (1987)

    Article  Google Scholar 

  13. Kodama, Y., Hasegawa, A.: Fission of optical solitons induced by stimulated Raman effect. Opt. Lett. 13, 392–394 (1988)

    Article  Google Scholar 

  14. Tsuru, H., Wadati, M.: The multiple pole solutions of the Sine–Gordon equation. J. Phys. Soc. Jpn. 53, 2908–2921 (1984)

    Article  MathSciNet  Google Scholar 

  15. Wadati, M., Ohkuma, K.: Multiple-pole solutions of the modified Korteweg-de Vries equation. J. Phys. Soc. Jpn. 51, 2029–2035 (1982)

    Article  MathSciNet  Google Scholar 

  16. Zhang, Y.S., Tao, X.X., Xu, S.W.: The bound-state soliton solutions of the complex modified KdV equation. Inverse Prob. 36, 065003 (18 pages) (2020)

    MathSciNet  MATH  Google Scholar 

  17. Zhang, Y.S., Rao, J.G., Cheng, Y., He, J.S.: Riemann–Hilbert method for the Wadati–Konno–Ichikawa equation: N simple poles and one higher-order pole. Physica D 399, 173–185 (2019)

    Article  MathSciNet  Google Scholar 

  18. Zhang, Y.S., Tao, X.X., Yao, T.T., He, J.S.: The regularity of the multiple higher-order poles solitons of the NLS equation. Stud. Appl. Math. 145, 812–827 (2020)

    Article  MathSciNet  Google Scholar 

  19. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972)

    MathSciNet  Google Scholar 

  20. Demontis, F., Prinari, B., van der Mee, C., Vitale, F.: The inverse scattering transform for the defocusing nonlinear schrödinger equations with nonzero boundary conditions. Stud. Appl. Math. 131, 1–40 (2013)

    Article  MathSciNet  Google Scholar 

  21. Kakei, S., Sasa, N., Satsuma, J.: Bilinearization of a generialized derivative nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 64, 1519–1523 (1995)

    Article  Google Scholar 

  22. Kundu, A.: Exact solutions to higher-order nonlinear equations through gauge transformation. Physica D 25, 399–406 (1987)

    Article  MathSciNet  Google Scholar 

  23. Fan, E.G.: A family of completely integrable multi-Hamiltonian systems explicitly related to some celebrated equations. J. Math. Phys. 42, 4327–4344 (2001)

    Article  MathSciNet  Google Scholar 

  24. Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19, 798–801 (1978)

    Article  Google Scholar 

  25. Chen, H.H., Lee, Y.C., Liu, C.S.: Integrability of nonlinear Hamiltonian systems by inverse scattering method. Phys. Scr. 20, 490–492 (1979)

    Article  MathSciNet  Google Scholar 

  26. Gerdjikov, V.S., Ivanov, I.: A quadratic pencil of general type and nonlinear evolution equations. II. Hierarchies of Hamiltonian structures. Bulg. J. Phys. 10, 130–143 (1983)

    MathSciNet  Google Scholar 

  27. Tzoar, N., Jain, M.: Self-phase modulation in long-geometry optical waveguides. Phys. Rev. A 23, 1266–1270 (1981)

    Article  Google Scholar 

  28. Kodama, Y.: Optical solitons in a monomode fiber. J. Stat. Phys. 39, 597–614 (1985)

    Article  MathSciNet  Google Scholar 

  29. Rogister, A.: Parallel propagation of nonlinear low-frequency waves in high-\(\beta \) plasma. Phys. Fluids 14, 2733–2739 (1971)

    Article  Google Scholar 

  30. Nakatsuka, H., Grischkowsky, D., Balant, A.C.: Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion. Phys. Rev. Lett. 47, 910–913 (1981)

    Article  Google Scholar 

  31. Einar, M.: Nonlinear alfvén waves and the dnls equation: oblique aspects. Phys. Scr. 40, 227–237 (1989)

    Article  Google Scholar 

  32. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, Boston (2007)

    MATH  Google Scholar 

  33. Fan, E.G.: Darboux transformation and solion-like solutions for the Gerdjikov–Ivanov equation. J. Phys. A 33, 6925–6933 (2000)

    Article  MathSciNet  Google Scholar 

  34. Dai, H.H., Fan, E.G.: Variable separation and algebro-geometric solutions of the Gerdjikov–Ivanov equation. Chaos Solitons Fractals 22, 93–101 (2004)

    Article  MathSciNet  Google Scholar 

  35. Hou, Y., Fan, E.G., Zhao, P.: Algebro-geometric solutions for the Gerdjikov–Ivanov hierarchy. J. Math. Phys. 54, 1–30 (2013)

    Article  MathSciNet  Google Scholar 

  36. He, B., Meng, Q.: Bifurcations and new exact travelling wave solutions for the Gerdjikov–Ivanov equation. Commun. Nonlinear Sci. Numer. Simul. 15, 1783–1790 (2010)

    Article  MathSciNet  Google Scholar 

  37. Kakei, S., Kikuchi, T.: Solutions of a derivative nonlinear Schrödinger hierarchy and its similarity reduction. Glasg. Math. J. 47, 99–107 (2005)

    Article  MathSciNet  Google Scholar 

  38. Nie, H., Zhu, J.Y., Geng, X.G.: Trace formula and new form of N-soliton to the Gerdjikov–Ivanov equation. Anal. Math. Phys. 8, 415–426 (2018)

    Article  MathSciNet  Google Scholar 

  39. Zhang, Z.C., Fan, E.G.: Inverse scattering transform for the Gerdjikov–Ivanov equation with nonzero boundary conditions. Z. Angew. Math. Phys. 71, 149 (28 pages) (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China (Grant Nos. 11671095, 51879045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Engui Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Fan, E. Inverse scattering transform and multiple high-order pole solutions for the Gerdjikov–Ivanov equation under the zero/nonzero background . Z. Angew. Math. Phys. 72, 153 (2021). https://doi.org/10.1007/s00033-021-01583-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01583-x

Keywords

Mathematics Subject Classification

Navigation