Skip to main content

Advertisement

Log in

Design and Fabrication of Micro Strip Patch Antenna for Cognitive Radio Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A micro strip patch antenna (MPA) is fabricated to increase the bandwidth. The communication systems want antennas with high directivity, high signal strength and gain. In this paper, spectrum underlay finite element line feeding technique (SUFELF) is proposed to design MPA's are potential for cognitive radio applications (CRA). The proposed SUFELF is designed and simulated by using HFSS-14, simulation and calculated results of SUFELF for S-band is compared. The proposed SUFELF construction can discover a lot of applications in designs for S band, efficient spectrum utilization in cognitive radio networks (CRN). To improve gain, The MPA with circular patch (CP) was fabricated through SUFELF. This design can carry out a gain of 4.21 dBi, and percentage of impedance bandwidth is 85.2% at 3.546 GHz. A SUFELF model has made-up and calculated, the results have revealed a excellent concurrence by means of the simulations. To obtain efficiency of 95.9% the Proposed Antenna (PA) is powered. We conclude this work with a discussion on the expansion to the coexistence with different patch antennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lee, H., Li, E. S., Jin, H., Li, C., & Chin, K. (2019). 60 GHz wideband LTCC micro strip patch antenna array with parasitic surrounding stacked patches. IET Microwaves, Antennas & Propagation, 13(1), 35–41.

    Article  Google Scholar 

  2. Hussain, R., Sharawi, M. S., & Shamim, A. (2018). 4-Element concentric pentagonal slot-line-based ultra-wide tuning frequency reconfigurable MIMO antenna system. IEEE Transactions on Antennas and Propagation, 66(8), 4282–4287.

    Article  Google Scholar 

  3. Ge, L., Li, M., Wang, J., & Gu, H. (2017). Unidirectional dual-band stacked patch antenna with independent frequency reconfiguration. IEEE Antennas and Wireless Propagation Letters., 16, 113–116.

    Article  Google Scholar 

  4. Zhao, X., Riaz, S., & Geng, S. (2019). A reconfigurable MIMO/UWB MIMO antenna for cognitive radio applications. IEEE Access, 7, 46739–46747.

    Article  Google Scholar 

  5. Gallardo, G. A., Jakllari, G., Canourgues, L., & Beylot, A. (2019). Statistical admission control in multi-hop cognitive radio networks. IEEE/ACM Transactions on Networking, 26(3), 1390–1403.

    Article  Google Scholar 

  6. Liu, B., Qiu, J., Lan, S., & Li, G. (2019). A wideband-to-narrowband rectangular dielectric resonator antenna integrated with tunable bandpass filter. IEEE Access, 7, 61251–61258.

    Article  Google Scholar 

  7. Ni, L., Da, X., Hu, H., Yuan, Y., Zhu, Z., & Pan, Y. (2019). Outage-constrained secrecy energy efficiency optimization for CRNs with non-linear energy harvesting. IEEE Access, 7, 175213–175221.

    Article  Google Scholar 

  8. Timilsina, S., Aruma Baduge, G. A., & Schaefer, R. F. (2018). Secure communication in spectrum-sharing massive MIMO systems with active eavesdropping. IEEE Transactions on Cognitive Communications and Networking, 4(2), 390–405.

    Article  Google Scholar 

  9. AlQahtani, S., & Alotaibi, A. (2019). A route stability-based multipath QoS routing protocol in cognitive radio ad hoc networks. Wireless Networks, 25, 2931–2951.

    Article  Google Scholar 

  10. Ansys High Frequency Structure Simulator (HFSS), Version 14.0. Ansoft.

  11. Aboufoul, T., Alomainy, A., & Parini, C. (2012). Reconfiguring UWB monopole antenna for cognitive radio applications using GaAs FET switches. IEEE Antennas and Wireless Propagation Letters, 11, 392–394.

    Article  Google Scholar 

  12. Qu, S., He, D., Yang, S., & Nie, Z. (2014). Novel parasitic micro strip arrays for low-cost active phased array applications. IEEE Transactions on Antennas and Propagation, 62(4), 1731–1737.

    Article  MathSciNet  Google Scholar 

  13. Zhu, J., Chu, C., Deng, L., Zhang, C., Yang, Y., & Li, S. (2018). mm-Wave high gain cavity-backed aperture-coupled patch antenna array. IEEE Access, 6, 44050–44058.

    Article  Google Scholar 

  14. Sun, B., Ding, X., Cheng, Y., & Shao, W. (2020). 2D Wide-angle scanning phased array with hybrid patch mode technique. IEEE Antennas and Wireless Propagation Letters, 19(4), 700–704.

    Article  Google Scholar 

  15. Wang, L., Guo, Y. X., & Sheng, W. X. (2013). Wideband high-gain 60-GHz LTCC L probe patch antenna array with a soft surface. IEEE Transactions on Antennas and Propagation, 61(4), 1802–1809.

    Article  Google Scholar 

  16. Yeap, S. B., Chen, Z. N., & Qing, X. (2011). Gain-enhanced 60-GHz LTCC antenna array with open air cavities. IEEE Transactions on Antennas and Propagation, 59(9), 3470–3473.

    Article  Google Scholar 

  17. Zaeemzadeh, A., Joneidi, M., Rahnavard, N., & Qi, G. (2018). Co-SpOT: Cooperative spectrum opportunity detection using bayesian clustering in spectrum-heterogeneous cognitive radio networks. IEEE Transactions on Cognitive Communications and Networking, 4(2), 206–219.

    Article  Google Scholar 

  18. Rajendran, M., & Duraisamy, M. (2020). Distributed coalition formation game for enhancing cooperative spectrum sensing in cognitive radio ad hoc networks. IET Networks, 9(1), 12–22.

    Article  Google Scholar 

  19. Singh, T., Ali, K. A., Chaudhary, H., et al. (2018). Design and analysis of reconfigurable microstrip antenna for cognitive radio applications. Wireless Personal Communications, 98, 2163–2185.

    Article  Google Scholar 

  20. Samanta, S., Reddy, P. S., & Mandal, K. (2018). Cross-polarization suppression in probe-fed circular patch antenna using two circular clusters of shorting pins. IEEE Transactions on Antennas and Propagation, 66(6), 3177–3182.

    Article  Google Scholar 

  21. Anveshkumar, N., Gandhi, A. S., & Dhasarathan, V. (2020). Cognitive radio paradigm and recent trends of antenna systems in the UWB 3.1–10.6 GHz. Wireless Networks, 26, 3257–3274.

    Article  Google Scholar 

  22. Suresh Chinnathampy, M., Aruna, T., & Muthukumaran, N. (2021). Antenna design: Micro strip patch for spectrum utilization in cognitive radio networks. Wireless Pers Commun (Online First Articles).

  23. Radiom, S., Baghaei-Nejad, M., Aliakbarian, H., et al. (2013). Miniaturization of UWB antennas and its influence on antenna-transceiver performance in impulse-UWB communication. Wireless Personal Communications, 71, 2913–2935.

    Article  Google Scholar 

  24. Sarkar, M., Dwari, S., & Daniel, A. (2015). Printed monopole antenna for ultra-wideband application with tunable triple band-notched characteristics. Wireless Personal Communications, 84, 2943–2954.

    Article  Google Scholar 

  25. Dave, T. P., & Rathod, J. M. (2020). A compact frequency diversity antenna with DGS and SRR mode switching for LTE and WLAN/WiMAX wireless systems. Wireless Personal Communications, 112, 411–420.

    Article  Google Scholar 

  26. Kaur, J., Singh, M. L., & Sohal, R. S. (2019). Analysis of sum spectrum efficiency in multiple antennas multi-user MIMO cellular system for millimeter wave communications. Sādhanā, 44, 180.

    Article  MathSciNet  Google Scholar 

  27. Li, W. T., Hei, Y. Q., Grubb, P. M., Shi, X., & Chen, R. T. (2018). Inkjet printing of wideband stacked microstrip patch array antenna on ultrathin flexible substrates. IEEE Transactions on Components, Packaging and Manufacturing Technology, 8(9), 1695–1701.

    Article  Google Scholar 

  28. Chen, Z., & Zhang, Y. (2019). Offshore electromagnetic spectrum distribution prediction model based on ray tracing method and PM wave spectrum. IEEE Access, 7, 174298–174311.

    Article  Google Scholar 

  29. Mohanakrishnan, U., & Ramakrishnan, B. (2020). MCTRP: An energy efficient tree routing protocol for vehicular ad hoc network using genetic whale optimization algorithm. Wireless Personal Communications, 110, 185–206.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Suresh Chinnathampy.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh Chinnathampy, M., Aruna, T. & Muthukumaran, N. Design and Fabrication of Micro Strip Patch Antenna for Cognitive Radio Applications. Wireless Pers Commun 121, 1577–1592 (2021). https://doi.org/10.1007/s11277-021-08685-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08685-9

Keywords

Navigation