Skip to main content

Advertisement

Log in

Identification of systolic and diastolic heart failure progression with Krawtchouk moment feature-aided Harris hawks optimized support vector machine

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The systolic and diastolic heart failure (HF) subjects are typically categorized based on clinical indices only. The relationship between different stages of systolic and diastolic heart failure and left ventricle (LV) myocardial tissue variations is presented in this work. The corr-entropy and optimized edge criterion has been incorporated into the level set (CEOELS) for effective segmentation of myocardium in cardiovascular magnetic resonance images to handle noise, intensity inhomogeneity and contour initialization. In order to learn shape and local variations in segmented myocardium, Krawtchouk moment features are computed for ten different moment orders. The relevant extracted features are obtained through Harris hawks optimization algorithm. The optimized features are fed to support vector machine (SVM) that uses fivefold cross-validation approach for classification. Experimental results show that CEOELS has provided better segmentation of LV blood cavity and myocardium with a similarity measure of 0.93 and 0.92, respectively. It is also observed that individual Krawtchouk moment orders greater than 30 have provided better HF prediction performance. Consequently, optimized Krawtchouk moment features produced an increased overall accuracy (80.8%) than individual feature sets. Significant improvement has also been achieved in distinction of hyperdynamic patients from normal and systolic dysfunction subjects that is less explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Borlaug, B.A., Redfield, M.M.: Diastolic and systolic heart failure are distinct phenotypes within the heart failure spectrum. Circulation 123(18), 2006–2013 (2011)

    Article  Google Scholar 

  2. Hunt, S.A., Abraham, W.T., Chin, M.H., Feldman, A.M., Francis, G.S., Ganiats, T.G., Jessup, M., Konstam, M.A., Mancini, D.M., Michl, K., Oates, J.A., Rahko, P.S., Silver, M.A., Stevenson, L.W., Yancy, C.W.: Focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 119(14), e391–e479 (2009)

    Google Scholar 

  3. Murphy, S.P., Ibrahim, N.E., Januzzi Jr, J.L.: Heart failure with reduced ejection fraction a review. JAMA 324(5), 488–504 (2020)

    Article  Google Scholar 

  4. Gorantla, R.S., Ahmed, S., Voruganti, D., Menzies, D.J.: Hyperdynamic left ventricle on radionuclide myocardial perfusion imaging (RNMPI): A marker of diastolic dysfunction in patients presenting with dyspnea on exertion. Int. J. Cardiol. Heart Vasc. 9, 43–47 (2015)

    Google Scholar 

  5. Ng, A.C.T., Bax, J.J.: Hyperdynamic left ventricular function and the prognostic implications for heart failure with preserved ejection fraction. Eur Heart J. 41(12), 1258–1259 (2020)

    Google Scholar 

  6. Cygan, S., Werys, K., Błaszczyk, L., Kubik, T., Kałużyński, K.: Left ventricle phantom and experimental setup for MRI and echocardiography—Preliminary results of data acquisitions. Biocybern. Biomed. Eng. 34(1), 19–24 (2014)

    Article  Google Scholar 

  7. Duan, J., Bello, G., Schlemper, J., Bai, W., Dawes, T.J.W., Biffi, C., Marvao, A., Doumou, G., O’Regan, D.P., Rueckert, D.: Automatic 3D Bi-Ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach. IEEE Trans. Med. Imaging. 38(9), 2151–2164 (2019)

    Article  Google Scholar 

  8. Liao, F., Chen, X., Hu, X., Song, S.: Estimation of the volume of the left ventricle from MRI images using deep neural networks. IEEE Trans. Cybern. 49(2), 495–504 (2017)

    Article  Google Scholar 

  9. Tan, L.K., Liew, Y.M., Lim, E., McLaughlin, R.A.: Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences. Med. Image Anal. 39, 78–86 (2017)

    Article  Google Scholar 

  10. Tan, L.K., McLaughlin, R.A., Lim, E., Abdul Aziz, Y.F., Liew, Y.M.: Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression. J. Magn. Reson. Imaging 48(1), 140–152 (2018)

    Article  Google Scholar 

  11. Ngo, T.A., Lu, Z., Carneiro, G.: Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med. Image. Anal. 35, 159–171 (2017)

    Article  Google Scholar 

  12. Yang, C., Wu, W., Su, Y., Zhang, S.: Left ventricle segmentation via two-layer level sets with circular shape constraint. Magn. Reson. Imaging 38, 202–213 (2017)

    Article  Google Scholar 

  13. Liu, Y., Captur, G., Moon, J.C., Guo, S., Yang, X., Zhang, S., Li, C.: Distance regularized two level sets for segmentation of left and right ventricles from Cine-MRI. Magn. Reson. Imaging 34(5), 699–706 (2016)

    Article  Google Scholar 

  14. Zhou, S., Wang, J., Zhang, M., Cai, Q., Gong, Y.: Correntropy-based level set method for medical image segmentation and bias correction. Neurocomputing 234, 216–229 (2017)

    Article  Google Scholar 

  15. Ding, K., Xiao, L., Weng, G.: Active contours driven by region-scalable fitting and optimized Laplacian of Gaussian energy for image segmentation. Signal Process. 134, 224–233 (2017)

    Article  Google Scholar 

  16. Kotu, L.P., Engan, K., Skretting, K., Måløy, F., Orn, S., Woie, L., Eftestøl, T.: Probability mapping of scarred myocardium using texture and intensity features in CMR images. Biomed. Eng. Online. 12(91), 1–19 (2013)

    Google Scholar 

  17. Bernard, O., Lalande, A., Zotti, C., Cervenansky, F., Yang, X., Heng, P.A., Cetin, I., Lekadir, K., Camara, O., Ballester, M.A.G., Sanroma, G.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  18. Isensee, F., Jaeger, P., Full, P.M., Wolf, I., Engelhardt, S., Maier-Hein, K.H.: Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features. In: Pop, M., et al. (eds.) Statistical Atlases and Computational Models of the Heart, ACDC and MMWHS Challenges, pp. 120–129. Springer, Cham (2018)

    Chapter  Google Scholar 

  19. Khened, M., Alex, V., Krishnamurthi, G.: Densely connected fully convolutional network for short-axis cardiac cine MR image segmentation and heart diagnosis using random forest. In: Pop, M., et al. (eds.) Statistical Atlases and Computational Models of the Heart, ACDC and MMWHS Challenges, pp. 140–151. Springer, Cham (2018)

    Chapter  Google Scholar 

  20. Wolterink, J.M., Leiner, T., Veirgever, M.A., Isgum, I.: Automatic segmentation and disease classification using cardiac cine MR images. In: Pop, M., et al. (eds.) Statistical Atlases and Computational Models of the Heart, ACDC and MMWHS Challenges, pp. 101–110. Springer, Cham (2018)

    Chapter  Google Scholar 

  21. Tang, L., Qian, J., Li, L., Hu, J., Wu, X.: Multimodal medical image fusion based on discrete Tchebichef moments and pulse coupled neural network. Int. J. Imaging Syst. Technol. 27(1), 57–65 (2017)

    Article  Google Scholar 

  22. Vijayanandh, T., Shenbagavalli, A.: Tamper detection of medical images using statistical moments against various attacks. Multimed. Tools Appl. 77, 10273–10284 (2018)

    Article  Google Scholar 

  23. Yap, P.T., Paramesran, R., Ong, S.H.: Image analysis by Krawtchouk moments. IEEE Trans. Image. Process. 12(11), 1367–1377 (2003)

    Article  MathSciNet  Google Scholar 

  24. Larroza, A., López-Lereu, M.P., Monmeneu, J.V., Gavara, J., Chorro, F.J., Bodí, V., Moratal, D.: Texture analysis of cardiac cine magnetic resonance imaging to detect nonviable segments in patients with chronic myocardial infarction. Med. Phys. 45(4), 1471–1480 (2018)

    Article  Google Scholar 

  25. Mustaqeem, A., Anwar, S.M., Majid, M.: Multiclass classification of cardiac arrhythmia using improved feature selection and SVM invariants. Comput. Math. Methods. Med. 2018, 1–10 (2018)

    Article  MathSciNet  Google Scholar 

  26. Premkumar, J., Janney, J.B., Nanda, A., Divakaran, S., Lavanya, P.: Detection of caries in dental X ray images using Multiclass SVM. J Pharm. Sci. Res. 11(9), 3264–3268 (2019)

    Google Scholar 

  27. Zeng, N., Qiu, H., Wang, Z., Liu, W., Zhang, H., Li, Y.: A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer’s disease. Neurocomputing 320, 195–202 (2018)

    Article  Google Scholar 

  28. Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks optimization: algorithm and applications. Future Gener. Comp. Sy. 97, 849–872 (2019)

    Article  Google Scholar 

  29. Cappabianco, F.A.M., Ribeiro, P.F.O., Miranda, P.A.V., Udupa, J.K.: A general and balanced region-based metric for evaluating medical image segmentation algorithms. In: IEEE International Conference on Image Processing. (2019)

  30. Heiberg, E., Sjogren, J., Ugander, M., Carlsson, M., Engblom, H., Arheden, H.: Design and validation of Segment—freely available software for cardiovascular image analysis. BMC. Med. Imaging. 10, 1–13 (2010)

    Article  Google Scholar 

  31. Luo, G., Wang, W., Tam, C., Wang, K., Cao, S., Zhang, H., Chen, B., Li, S.: Dynamically constructed network with error correction for accurate ventricle volume estimation. Med. Image Anal. 64, 101723 (2020)

    Article  Google Scholar 

  32. Lin, A., Wu, J., Yang, X.: A data augmentation approach to train fully convolutional networks for left ventricle segmentation. Magn. Reson. Imaging 66, 152–164 (2020)

    Article  Google Scholar 

  33. Liu, Z., Zhang, Y., Li, W., Li, S., Zou, Z., Chen, B.: Multislice left ventricular ejection fraction prediction from cardiac MRIs without segmentation using shared SptDenNet. Comput. Med. Imaging Graph. 86, 101795 (2020)

    Article  Google Scholar 

  34. Tripoliti, E.E., Papadopoulos, T.G., Karanasiou, G.S., Naka, K.K., Fotiadis, D.I.: Heart failure: diagnosis, severity estimation and prediction of adverse events through machine learning techniques. Comput. Struct. Biotechnol. J. 15, 26–47 (2017)

    Article  Google Scholar 

Download references

Funding

This study has no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthulakshmi Muthunayagam.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Consent to participate and for publication

This study includes the images from publicly available database (https://www.kaggle.com/c/second-annual-data-science-bowl), and the database has been cited.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthunayagam, M., Ganesan, K. Identification of systolic and diastolic heart failure progression with Krawtchouk moment feature-aided Harris hawks optimized support vector machine. SIViP 16, 127–135 (2022). https://doi.org/10.1007/s11760-021-01978-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-01978-3

Keywords

Navigation