Skip to main content
Log in

Error analysis of the compliance model for the Signorini problem

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

The present paper is concerned with a class of penalized Signorini problems also called normal compliance models. These nonlinear models approximate the Signorini problem and are characterized both by a penalty parameter \(\varepsilon \) and by a “power parameter” \(\alpha \ge 1\), where \(\alpha = 1\) corresponds to the standard penalization. We choose a continuous conforming linear finite element approximation in space dimensions \(d=2,3\) and obtain \(L^2\)-error estimates under various assumptions which are discussed and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces Pure and Applied Mathematics, vol. 65. Academic Press, New York, London (1975)

    Google Scholar 

  2. Ben Belgacem, F.: Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element methods. SIAM J. Numer. Anal. 37(4), 1198–1216 (2000)

    Article  MathSciNet  Google Scholar 

  3. Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2010)

    Book  Google Scholar 

  4. Burman, E., Hansbo, P., Larson, M.G.: The penalty-free Nitsche method and nonconforming finite elements for the Signorini problem. SIAM J. Numer. Anal. 55(6), 173–195 (2017)

    Article  MathSciNet  Google Scholar 

  5. Burman, E., Hansbo, P., Larson, M.G.: Augmented Lagrangian finite element methods for contact problems. ESAIM Math. Model. Numer. Anal. 53(1), 2523–2539 (2019)

    Article  MathSciNet  Google Scholar 

  6. Chouly, F., Hild, P.: A Nitsche-based method for unilateral contact problems: numerical analysis. SIAM J. Numer. Anal. 51(2), 1295–1307 (2013)

    Article  MathSciNet  Google Scholar 

  7. Chouly, F., Hild, P.: On convergence of the penalty method for unilateral contact problems. Appl. Numer. Math. 65, 27–40 (2013)

    Article  MathSciNet  Google Scholar 

  8. Chouly, F., Hild, P., Renard, Y.: Symmetric and non-symmetric variants of Nitsche’s method for contact problems in elasticity: theory and numerical experiments. Math. Comput. 84(293), 1089–1112 (2015)

    Article  MathSciNet  Google Scholar 

  9. Christof, C., Haubner, C.: Finite element error estimates in non-energy norms for the two-dimensional scalar Signorini problem. Numer. Math. 145(3), 513–551 (2020)

    Article  MathSciNet  Google Scholar 

  10. Coorevits, P., Hild, P., Lhalouani, K., Sassi, T.: Mixed finite element methods for unilateral problems: convergence analysis and numerical studies. Math. Comput. 71(237), 1–25 (2002)

    Article  MathSciNet  Google Scholar 

  11. Dione, I.: Optimal convergence analysis of the unilateral contact problem with and without Tresca friction conditions by the penalty method. J. Math. Anal. Appl. 472(1), 266–284 (2019)

    Article  MathSciNet  Google Scholar 

  12. Dione, I.: Optimal error estimates of the unilateral contact problem in a curved and smooth boundary domain by the penalty method. IMA J. Numer. Anal. 40(1), 729–763 (2020)

    Article  MathSciNet  Google Scholar 

  13. Drouet, G., Hild, P.: Optimal convergence for discrete variational inequalities modelling Signorini contact in 2d and 3d without additional assumptions on the unknown contact set. SIAM J. Numer. Anal. 53(3), 1488–1507 (2015)

    Article  MathSciNet  Google Scholar 

  14. Drouet, G., Hild, P.: An accurate local average contact method for nonmatching meshes. Numer. Math. 136(2), 467–502 (2016)

    Article  MathSciNet  Google Scholar 

  15. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004)

    Book  Google Scholar 

  16. Glowinski, R., Lions, J.-L., Trémolières, R.: Numerical Analysis of Variational Inequalities, Volume 8 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York, 1981. Translated from the French

  17. Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. ESAIM Math. Model. Numer. Anal. Modélisation Mathématique et Analyse Numérique 9(R2), 41–76 (1975)

    MATH  Google Scholar 

  18. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, volume 69 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011)

  19. Hardering, H.: The Aubin–Nitsche trick for semilinear problems. arXiv:1707.00963 (2017)

  20. Hild, P., Renard, Y.: A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics. Numer. Math. 115(1), 101–129 (2010)

    Article  MathSciNet  Google Scholar 

  21. Hüeber, S., Wohlmuth, B.: An optimal a priori error estimate for nonlinear multibody contact problems. SIAM J. Numer. Anal. 43, 156–173 (2005)

    Article  MathSciNet  Google Scholar 

  22. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, Volume 8 of SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1988)

  23. Klarbring, A., Mikelic, A., Shillor, M.: Frictional contact problems with normal compliance. Int. J. Eng. Sci. 26, 811–832 (1988)

    Article  MathSciNet  Google Scholar 

  24. Klarbring, A., Mikelic, A., Shillor, M.: On friction problems with normal compliance. Nonlinear Anal. 13, 935–955 (1989)

    Article  MathSciNet  Google Scholar 

  25. Martins, J.A.C., Oden, J.T.: Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. Nonlinear Anal. 11, 407–428 (1987)

    Article  MathSciNet  Google Scholar 

  26. Mghazli, Z.: Regularity of an elliptic problem with mixed Dirichlet–Robin boundary conditions in a polygonal domain. Calcolo, 29(3–4):241–267 (1993/1992)

  27. Natterer, F.: Optimale L2-konvergenz finiter elemente bei variationsungleichungen. Bonner Math. Schriften 89, 1–12 (1976)

    MATH  Google Scholar 

  28. Oden, J.T., Martins, J.A.C.: Models and computational methods for dynamic friction phenomena. Comput. Methods. Appl. Mech. Eng. 52, 527–634 (1987)

    Article  MathSciNet  Google Scholar 

  29. Savaré, G.: On the regularity of the positive part of functions. Nonlinear Anal. 27(9), 1055–1074 (1996)

    Article  MathSciNet  Google Scholar 

  30. Steinbach, O., Wohlmuth, B., Wunderlich, L.: Trace and flux a priori error estimates in finite element approximations of Signorini-type problems. IMA J. Numer. Anal. 36(3), 1072–1095 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Hild.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cantin, P., Hild, P. Error analysis of the compliance model for the Signorini problem. Calcolo 58, 32 (2021). https://doi.org/10.1007/s10092-021-00425-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-021-00425-6

Keywords

Mathematics Subject Classification

Navigation