Skip to main content
Log in

Uncovering morphological and physiological markers to distinguish Azolla strains

  • Systematics, Phylogeny & Floristics - Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Taxonomy of Azolla was extensively studied, but still its identification based on morphological, physiological, and reproductive structure remains unclear. Hence, an attempt was made to differentiate Azolla strains based on morphological and physiological traits, keeping six known Azolla (Azolla microphylla, Azolla caroliniana, Azolla mexicana, Azolla rubra, Azolla filiculoides, and Azolla pinnata) as reference for this study. The results showed that out of 96, 21 strains were sporulated during December, 2017 to February 2018 along with two known species, i.e., A. microphylla and A. pinnata. All sporulating strains (except GSMI 1) showed morphological-resemblance with A. pinnata, whereas GSMI 1 was resembled with A. microphylla. Biplot principal coordinate analysis (PCoA) based on physiological data revealed that GSMI 1 was significantly resembled with A. microphylla. Moreover, the presence of rounded dorsal leaf lobe in A. caroliniana has made it unique in Euzolla sub-section and hence, differentiated from other four species (A. microphylla, A. mexicanaA. rubra, and A. filiculoides). WinRHIZO-based root-imaging technique showed the presence of thick root hairs in A. pinnata as compared to other Azolla strains, whereas efficiency of photosystem II (F/Fm, a chlorophyll fluorescence-imaging derived value) and relative growth rate were found higher in CRRI 4. In conclusion, the present study generated a presumptive classification key of 102 strains of Azolla for the first time, which indicates clearly that taxonomy in Azolla should be reviewed. Validation of these characters through molecular markers will give further insight about their classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abraham GN, Pandey V, Mishra AA, Chaudhary A, Ahmad R, Singh R, Singh PK (2013) Development of SCAR based molecular markers for identification of different species of Azolla. Indian J Biotechnol 12:489–492

    CAS  Google Scholar 

  • Arnon DI (1949) The estimation of chlorophyll in plants. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashton PJ (1971) Effect of some environmental factors on the growth of Azolla filiculoides Lam. The Orange River. Progress Report. Inst Environ Sci Univ. OFS, Bloemfotein, SA, pp 123–136

    Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Ann Rev Plant Biol 59:89–113

    Article  CAS  Google Scholar 

  • Bennicelli R, Stępniewska Z, Banach A, Szajnocha K, Ostrowski J (2004) The ability of Azolla caroliniana to remove heavy metals (Hg (II), Cr (III), Cr (VI)) from municipal waste water. Chemosphere 55:141–146

    Article  CAS  PubMed  Google Scholar 

  • Brouwer P, Bräutigam A, Külahoglu C, Tazelaar AO, Kurz S, Niero KG, van der Werf A, Weber APM, Schluepman H (2014) Azolla domestication towards a biobased economy? New Phytol 202:1069–1082

    Article  CAS  PubMed  Google Scholar 

  • Brouwer P, Schluepmann H, Nierop KG, Elderson J, Bijl PK, van der Meer I, de Visser W, Reichart GJ, Smeekens S, van der Werf A (2018) Growing Azolla to produce sustainable protein feed: The effect of differing species and CO2 concentrations on biomass productivity and chemical composition. J Sci Food Agri 98:4759–4768

    Article  CAS  Google Scholar 

  • Carrapiço F (2010) Azolla as a superorganism: Its implication in symbiotic studies. In: Symbioses and stress. Springer, Berlin, pp 17:225–241.

  • Carrapiço F (2017) The AzollaAnabaena–bacteria association: A case of symbiotic abduction? In: Algal and cyanobacteria symbioses, pp 329–345.

  • Cen H, Weng H, Yao J, He M, Lv J, Hua S, He Y (2017) Chlorophyll fluorescence imaging uncovers photosynthetic fingerprint of Citrus Huanglongbing. Front Plant Sci 8:1509

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandewar D, Rathod K, Mohale D (2018) Effect of green Azolla (Azolla pinnata) feeding on productive performance of crossbred cows. Biosci Trends 11:745–747

    Google Scholar 

  • Das U, Ghosh S, Mondal B (2020) Resilience of agriculture in a climatically vulnerable state of India. Theor Appl Climatol 139:1513–1529

    Article  Google Scholar 

  • De Benedetti F, Zamaloa MDC, Gandolfo MA, Cúneo NR (2018) Heterosporous ferns from Patagonia: The Case of Azolla. In: Transformative paleobotany, Academic Press, 361–373.

  • Duntam DG, Fowler K (1987) Taxonomy and species recognition in Azolla Lam. In: Workshop on Azolla use, Fuzhou, Fujian, China, 31 Mar to 5 Apr 1985.

  • Eskew DL, Caetano-Anollés G, Bassam BJ, Gresshoff PM (1993) DNA amplification fingerprinting of the Azolla-Anabaena symbiosis. Plant Mol Biol 21:363–373

    Article  CAS  PubMed  Google Scholar 

  • Evrard C, Van Hove C (2004) Taxonomy of the American Azolla species (Azollaceae): a critical review. Syst Geogr Pl 75:301–318

    Google Scholar 

  • Fowler K (1975) An escape mechanism for spermatozoids in Azolla massulae. Am Fern J 65:7–10

    Article  Google Scholar 

  • Gevrek MN, Samanci B, Yagmur B, Arabaci O, Özkaynak E (2004) Studies on the adaptation of Azolla mexicana in the aegean and the mediterranean regions. Plant Prod Sci 7:50–54

    Article  Google Scholar 

  • Guidi L (2011) Imaging of Chlorophyll a fluorescence: A tool to study abiotic stress in plants. In: Abiotic stress in plants, mechanisms and adaptations, Intechopen, pp 3–18.

  • Gururani MA, Venkatesh J, Ghosh R, Strasser RJ, Ponpandian LN, Bae H (2017) Chlorophyll-a fluorescence evaluation of PEG-induced osmotic stress on PSII activity in Arabidopsis plants expressing SIP1. Plant Biosyst 152:1–8

    CAS  Google Scholar 

  • Hechler WD, Dawson JO (1995) Factors affecting nitrogen fixation in Azolla caroliniana. Urbana 51:61801

    Google Scholar 

  • Himmelbauer ML (2004) Estimating length, average diameter and surface area of roots using two different image analyses systems. Plant Soil 260:111–120

    Article  CAS  Google Scholar 

  • Himmelbauer ML, Scholl P, Bodnerm G, Loiskandl W (2017) Root system architecture–budget experimental system for monitoring and analyses. Biologia 72:988–994

    Article  Google Scholar 

  • Kannaiyan S, Somporn C (1988) Studies on the growth, nitrogen fixation, chlorophyll content and photosynthesis in Azolla. Indian J Plant Physiol 31:134–139

    Google Scholar 

  • Kar PP, Mishra S, Singh DP (1999) Influence of gibberellic acid on the sporulation of Azolla caroliniana, Azolla microphylla and Azolla pinnata. Biol Fertility Soils 29:424–429

    Article  CAS  Google Scholar 

  • Kar PP, Mishra S, Singh DP (2000) Variability in Azolla sporulation in response to phosphorus application. Biol Fertility Soils 32:458–462

    Article  Google Scholar 

  • Kar PP, Mishra S, Singh DP (2002) Azolla sporulation in response to application of some selected auxins and their combination with gibberellic acid. Biol Fertility Soils 35:314–319

    Article  CAS  Google Scholar 

  • Kösesakal T (2014) Effects of seasonal changes on pigment composition of Azolla filiculoides Lam. Am Fern J 104:58–66

    Article  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Biol 42:313–349

    Article  CAS  Google Scholar 

  • Kumar U, Nayak AK (2019) Azolla Germplasms at NRRI: Conservation, Characterization and Utilization. NRRI Research Bulletin 19. ICAR-NRRI, Cuttack, pp 68.

  • Kumar U, Kumar A, Umakanta N, Bagchi TB, Mohanty S, Kumar A, Shahid M, Nayak AK (2015) Nutrient profiling and identification of genetic marker for Azolla sp. In: XXIII International Grassland Congress. https://uknowledge.uky.edu/igc/23/4-1-4/7.

  • Kumar U, Pannereselvam P, Nayak AK (2018) Azolla-sporocarp formulation for sustainable rice production. NRRI News Lett 39:16

    Google Scholar 

  • Kumar U, Nayak AK, Panneerselvam P, Kumar A, Mohanty S, Shahid M, Sahoo A, Kaviraj M, Priya H, Jambhulkar NN, Dash P, Mohapatra SD, Nayak PK (2019) Cyanobiont diversity in six Azolla spp. and relation to Azolla-nutrient profiling. Planta 249:1435–1447

    Article  CAS  PubMed  Google Scholar 

  • Kumar U, Panneerselvam P, Priya H, Nayak AK (2020) Utilization of Azolla as livestock feed and microbial growth medium. NRRI News Letter 41:9–10

    Google Scholar 

  • Kumar U, Kaviraj M, Pannereselvam P, Nayak AK (2021a) NRRIAzo-Media (NAM): A microbial growth culture media. TechNRRI. NRRI Research/Technical Brief 06. ICAR-NRRI, Cuttack.

  • Kumar U, Kaviraj M, Rout S, Pannereselvam P, Nayak AK (2021b) NRRI Azolla-sporocarp formulation for nitrogen management in low land rice. TechNRRI. NRRI Technology Bulletin 157. ICAR-NRRI, Cuttack.

  • Kumar U, Kaviraj M, Rout S, Chakraborty K, Swain P, Nayak PK, Nayak AK (2021c) Combined application of ascorbic acid and endophytic N-fixing Azotobacter chroococcum Avi2 modulates photosynthetic efficacy, antioxidants and growth-promotion in rice under moisture deficit stress. Microbiol Res 10:126808

    Article  Google Scholar 

  • Lastrucci L, Fiorini G, Lunardi L, Viciani D (2019) Herbarium survey on the genus Azolla (Salviniaceae) in Italy: distributive and taxonomic implications. Plant Biosyst 153:1–10

    Article  Google Scholar 

  • Leterme P, Londoño AM, Ordoñez DC, Rosales A, Estrada F, Bindelle J, Buldgen A (2010) Nutritional value and intake of aquatic ferns (Azolla filiculoides Lam. and Salvinia molesta Mitchell.) in sows. Anim Feed Sci Technol 155:55–64

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. In: 603rd Meeting, Liverpool, Biochemical Society Transactions 11:591–592.

  • Lichtenthaler HK, Langsdorf G, Lenk S, Buschmann C (2005) Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system. Photosynthetica 43:355–369

    Article  CAS  Google Scholar 

  • Lumpkin TA, Plucknett DL (1982) Azolla as a green manure: use and management in crop production. Westview Press Inc, Boulder, pp 177–196

    Google Scholar 

  • Madeira PT, Center TD, Coetzee JA, Pemberton RW, Purcell MF, Hill MP (2013) Identity and origins of introduced and native Azolla species in Florida. Aquat Bot 111:9–15

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence - a practical guide. J Exp Bot 345:659–668

    Article  Google Scholar 

  • Metzgar JS, Schneider H, Pryer KM (2007) Phylogeny and divergence time estimates for the fern genus Azolla (Salviniaceae). Int J Plant Sci 168:1045–1053

    Article  Google Scholar 

  • Miranda CV, Schwartsburd PB (2016) Aquatic ferns from Viçosa (MG, Brazil): Salviniales (Filicopsida; Tracheophyta). Braz J Bot 39:935–942

    Article  Google Scholar 

  • Nayak SK, Singh PK (1989) Cytological studies in the genus Azolla. Cytologia 54:275–286

    Article  Google Scholar 

  • Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components–calculation of qP and Fv-/Fm; without measuring Fo. Photosynth Res 54:135–142

    Article  CAS  Google Scholar 

  • Pabby A, Prasanna R, Singh PK (2003) Azolla-Anabaena symbiosis-from traditional agriculture to biotechnology. Indian J Biotechnol 2:26–37

    Google Scholar 

  • Paez-Garcia A, Motes C, Scheible WR, Chen R, Blancaflor E, Monteros M (2015) Root traits and phenotyping strategies for plant improvement. Plants 4:334–355

    Article  PubMed  PubMed Central  Google Scholar 

  • Papaefthimiou D, Van Hove C, Lejeune A, Rasmussen U, Wilmotte A (2008) Diversity and host specificity of genus Azolla cyanobionts. J Phycol 44:60–70

    Article  CAS  PubMed  Google Scholar 

  • Pereira AL (2017) The Unique symbiotic system between a fern and a cyanobacterium, Azolla-Anabaena azollae: Their Potential as Biofertilizer, Feed, and Remediation. In: Simbiosis. London, (U.K.), Intechopen, pp. 5–20.

  • Pereira AL, Carrapiço F (2009) Culture of Azolla filiculoides in artificial conditions. Plant Biosyst 143:431–434

    Article  Google Scholar 

  • Pereira AL, Teixeira G, Sevinate-Pinto I, Antunes NT, Carrapiço F (2000) Taxonomy of the genus Azolla Lam. Portugal Portugaliae Acta Biologica 19:277–282

    Google Scholar 

  • Pereira AL, Teixeira G, Sevinate-Pinto I, Antunes T, Carrapiço F (2001) Taxonomic re-evaluation of the Azolla genus in Portugal. Plant Biosyst 135:285–294

    Article  Google Scholar 

  • Pereira AL, Martins M, Oliveira MM, Carrapiço F (2011) Morphological and genetic diversity of the family Azollaceae inferred from vegetative characters and RAPD markers. Plant Syst Evol 297:213–226

    Article  Google Scholar 

  • Pistori RE, Camargo AF, Henry-Silva GG (2004) Relative growth rate and doubling time of the submerged aquatic macrophyte Egeria densa Planch. Acta Limnol Bras 16:77–84

    Google Scholar 

  • PPG I, (2016) A community-derived classification for extant lycophytes and ferns. J Syst Evol 54:563–603

    Article  Google Scholar 

  • Qiu YL, Yu J (2003) Azolla—a model organism for plant genomic studies. Genom Proteom Bioinf 1:15–25

    Article  CAS  Google Scholar 

  • Raja W, Rathaur P, John SA, Ramteke PW (2012) Azolla: An aquatic pteridophyte with great potential. Int J Res Biol Sci 2:68–72

    Google Scholar 

  • Rajaniemi P, Hrouzek P, Kastovská K, Willame R, Rantala A, Hoffman L, Komárek J, Sivonen K (2005) Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Int J Syst Evol Microbiol 55:11–26

    Article  CAS  PubMed  Google Scholar 

  • Reid JD, Plunkett GM, Peters GA (2006) Phylogenetic relationships in the heterosporous fern genus Azolla (Azollaceae) based on DNA sequence data from three noncoding regions. Int J Plant Sci 167:529–538

    Article  CAS  Google Scholar 

  • Roy DC, Pakhira MC, Bera S (2016) A review on biology, cultivation and utilization of Azolla. Adv Life Sci 5:11–15

    Google Scholar 

  • Sadeghi R, Sabetraftar K, Zarkami R, van Damme P (2013) A review of some ecological factors affecting the growth of Azolla spp. Casp J Environ Sci 11:65–76

    Google Scholar 

  • Salehzadeh A, Naeemi AS, Arasteh A (2014) Biodiesel Production from Azolla filiculoides (water fern). Trop J Pharm Res 13:957–960

    Article  CAS  Google Scholar 

  • Saunders RM, Fowler K (1992) A morphological taxonomic revision of Azolla Lam. section Rhizosperma (Mey.) Mett. (Azollaceae). Bot J Lin Soc 109:329–357

    Article  Google Scholar 

  • Sessa EB, Banks JA, Barker MS, Der JP, Duffy AM, Graham SW, Hasebe M, Langdale J, Li FW, Marchant DW, Pryer KM (2014) Between Two Fern Genomes. Gigascience 3:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh A, Srivastava ON (1985) Effect of light intensity on the growth of Azolla pinnata R. Brown at Ranchi, India. Hydrobiologia 126:49–52

    Article  Google Scholar 

  • Singh PK, Singh DP, Pandey KD (1987) The influence of fertilizers on sporocarp formation in Azolla pinnata. Plant Sci 97:223–226

    Google Scholar 

  • Singh PK, Bisoyi RN, Singh RP (1990) Collection and germination of sporocarps of Azolla caroliniana. Ann Bot 66:51–56

    Article  Google Scholar 

  • Sjödin E (2012) Cultivating Azolla. The Azolla cooking and cultivation project, pp 38.

  • Sood A, Prasanna R, Singh PK (2008) Fingerprinting of freshly separated and cultured cyanobionts from different Azolla species using morphological and molecular markers. Aquat Bot 88:142–147

    Article  CAS  Google Scholar 

  • Stergianou KK, Fowler KE (1989) Preliminary report of chromosome counts in the genus Azolla (Pteridophyta). Fern Gaz 13:317–319

    Google Scholar 

  • Sumanta N, Haque CI, Nishika J, Suprakash R (2014) Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res J Chem Sci 2231:606X

    Google Scholar 

  • Svenning MM, Eriksson T, Rasmussen U (2005) Phylogeny of symbiotic cyanobacteria within the genus Nostoc based on 16S rDNA sequence analyses. Arc Microbiol 183:19–26

    Article  CAS  Google Scholar 

  • Svenson HK (1944) The new world species of Azolla. Am Fern J 34:69–84

    Article  Google Scholar 

  • Traore TM (1995). Determination of Azolla sporulation period according to climatic conditions. Cahiers d'Etudes et de Recherches Francophones Agricultures, France.

  • Vafaei F, Khataee AR, Movafeghi A, Lisar SS, Zarei M (2012) Bioremoval of an azo dye by Azolla filiculoides: Study of growth, photosynthetic pigments and antioxidant enzymes status. Int Biodeter Biodegr 75:194–200

    Article  CAS  Google Scholar 

  • van Coppenolle B, Mc Couch SR, Watanabe I, Huang N, van Hove C (1995) Genetic diversity and phylogeny analysis of Anabaena azollae based on RFLPs detected in Azolla-Anabaena azollae DNA complexes using nif gene probes. Theor Appl Genet 91:589–597

    Article  PubMed  Google Scholar 

  • Wagner GM (1997) Azolla: a review of its biology and utilization. Bot Rev 63:1–26

    Article  Google Scholar 

  • Watanabe I, Berja NS (1983) The growth of four species of Azolla as affected by temperature. Aquat Bot 15:175–185

    Article  CAS  Google Scholar 

  • Yadav RK, Abraham G, Singh YV, Singh PK (2014) Advancements in the utilization of Azolla-Anabaena system in relation to sustainable agricultural practices. Proc Indian Natl Sci Acad 80:301–316

    Article  Google Scholar 

  • Zimmerman WJ, Lumpkin TA, Watanabe I (1989) Classification of Azolla spp., section Azolla. Euphytica 43:223–232

    Article  Google Scholar 

Download references

Acknowledgements

We thank all the erstwhile researchers associated with Azolla germplasm maintenance work at the ICAR-National Rice Research Institute (NRRI), Cuttack. Director, NRRI is highly acknowledged for providing the necessary facilities to carry out this research. Partial financial support from projects EAP 200 & EAP 275 are also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

UK and SR conceived of, generated the data, analyzed, interpreted the data and drafted the paper. MK and PS generated the partial data. MK also analyzed and interpreted the data. UK and AKN critically revised it for important intellectual content.

Corresponding author

Correspondence to Upendra Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4608 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, U., Rout, S., Kaviraj, M. et al. Uncovering morphological and physiological markers to distinguish Azolla strains. Braz. J. Bot 44, 697–713 (2021). https://doi.org/10.1007/s40415-021-00725-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-021-00725-9

Keywords

Navigation