Skip to main content

Advertisement

Log in

Atmospheric-Boundary-Layer-Height Variation over Mountainous and Urban Sites in Beijing as Derived from Radar Wind-Profiler Measurements

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The evolution of the atmospheric boundary layer (ABL) varies greatly with terrain, so that the spatial and temporal variabilities of the ABL height remain poorly understood over complex terrain. Using radar wind-profiler measurements obtained from rural mountainous (Yanqing) and adjoining urban-plain (Haidian) landscapes of Beijing, China in 2019, ABL heights are calculated based on a normalized signal-to-noise-ratio threshold. The seasonally contrasting features of ABL height variation and growth rate over the two sites are revealed for clear-sky conditions. Interestingly, the ABL in spring remains suppressed during the morning and evolves rapidly in the afternoon over Haidian; however, a usual diurnal ABL evolution is observed over Yanqing. During the winter, more rapid evolution of the ABL is observed over Haidian, although on average the daytime ABL height remains less than 800 m above ground level. The growth rate of ABL height is found to undergo a more pronounced seasonal variation over Haidian while being relatively less variable over Yanqing. As expected, the lowest (highest) growth rate of 90 m h−1 (188 m h−1) occurs in winter (summer) over Haidian. The analysis of the seasonal variations in wind profiles reveals deeper insights into the development of the local plain-to-mountain flow circulation over the region and possible implications on the contrasting seasonal ABL variations, particularly during the spring and summer. Additionally, the slower ABL evolution over Haidian in autumn and winter could be associated with an aerosol-induced stable ABL as well as stronger urban heat accumulation. The findings have implications for the better understanding of air pollution meteorology in regions with mountainous terrain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adler B, Kalthoff N (2016) The impact of upstream flow on the atmospheric boundary layer in a valley on a mountainous island. Boundary-Layer Meteorol 158:429–452

    Article  Google Scholar 

  • Allen L, Lindberg F, Grimmond CSB (2011) Global to city scale urban anthropogenic heat flux: model and variability. Int J Climatol 31:1990–2005

    Article  Google Scholar 

  • Angevine WM, White AB, Avery SK (1994) Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler. Boundary-Layer Meteorol 68(4):375–385

    Article  Google Scholar 

  • Angevine WM, White AB, Senff CJ, Trainer M, Banta RM, Ayoub MA (2003) Urban–rural contrasts in mixing height and cloudiness over Nashville in 1999. J Geophys Res Atmos 108:AAC 3–1-AAC 3–10

    Article  Google Scholar 

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23(1):1–26

    Article  Google Scholar 

  • Barlow JF (2014) Progress in observing and modelling the urban boundary layer. Urban Climate 10:216–240

    Article  Google Scholar 

  • Barlow JF, Halios CH, Lane S, Wood CR (2015) Observations of urban boundary layer structure during a strong urban heat island event. Environ Fluid Mech 15:373–398

    Article  Google Scholar 

  • Bianco L, Wilczak JM (2002) Convective boundary layer depth: Improved measurement by Doppler radar wind profiler using fuzzy logic methods. J Atmos Ocean Technol 19(1):1745–1758

    Article  Google Scholar 

  • Chen Y, An JL, Wang XQ, Sun YL, Wang ZF, Duan J (2017) Observation of wind shear during evening transition and an estimation of submicron aerosol concentrations in Beijing using a Doppler wind lidar. J Meteor Res 31(2):350–362

    Article  Google Scholar 

  • Cohn SA, Angevine WM (2000) Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars. J Appl Meteorol 39(8):1233–1247

    Article  Google Scholar 

  • De Wekker SFJ, Kossmann M (2015) Convective boundary layer heights over mountainous terrain–a review of concepts. Front Earth Sci 3:77

    Article  Google Scholar 

  • De Wekker SFJ (2008) Observational and numerical evidence of depressed convective boundary layer heights near a mountain base. J Appl Meteorol Climatol 47:1017–1026

    Article  Google Scholar 

  • Fenger J (2009) Air pollution in last 50 years – from local to global. Atmos Environ 43:13–22

    Article  Google Scholar 

  • Guo H, Xu M, Hu Q (2011a) Changes in near-surface wind speed in China: 1969–2005. Int J Climatol 31:349–358

    Article  Google Scholar 

  • Guo J, Zhang X, Wu Y, Zhaxi Y, Che H, La B, Wang W, Li X (2011b) Spatio-temporal variation trends of satellite-based aerosol optical depth in China during 1980–2008. Atmos Environ 45:6802–6811

    Article  Google Scholar 

  • Guo J, Miao Y, Zhang Y, Liu H, Li Z, Zhang W, He J, Lou M, Yan Y, Bian L, Zhai P (2016) The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data. Atmos Chem Phys 16:13309–13319

    Article  Google Scholar 

  • Guo J, Li Y, Cohen JB, Li J, Chen D, Xu H, Liu L, Yin J, Hu K, Zhai P (2019a) Shift in the temporal trend of boundary layer height in China using long-term (1979–2016) radiosonde data. Geophys Res Lett 46:6080–6089

    Article  Google Scholar 

  • Guo J, Yan Y, Chen D, Lv Y, Han Y, Guo X, Liu L, Miao Y, Chen T, Nie J, Zhai P (2020) The response of warm-season precipitation extremes in China to global warming: an observational perspective from radiosonde measurements. Clim Dyn 54:3977–3989

    Article  Google Scholar 

  • Guo M, Chen S, Wang W, Liang H, Hao G, Liu K (2019b) Spatiotemporal variation of heat fluxes in Beijing with land use change from 1997 to 2017. Phys Chem Earth 110:51–60

    Article  Google Scholar 

  • Han W, Li Z, Wu F, Zhang Y, Guo J, Su T, Cribb M, Fan J, Chen T, Wei J, Lee S-S (2020) The mechanisms and seasonal differences of the impact of aerosols on daytime surface urban heat island effect. Atmos Chem Phys 20:6479–6493

    Article  Google Scholar 

  • Haub C (2010) World population data sheet. Population Reference Bureau, Washington

    Google Scholar 

  • Huang M, Gao Z, Miao S, Chen F, Lemone MA, Li J, Hu F, Wang L (2017) Estimate of boundary-layer depth over Beijing, china, using doppler lidar data during SURF-2015. Bound-Layer Meteorol 162:503–522

    Article  Google Scholar 

  • Imhoff ML, Zhang P, Wolfe RE, Bounoua L (2010) Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens Environ 114(3):504–513

    Article  Google Scholar 

  • Inoue T, Kimura F (2004) Urban effects on low-level clouds around the Tokyo metropolitan area on clear summer days. Geophys Res Lett 31:L05103

    Article  Google Scholar 

  • Lange D, Rocadenbosch F, Tiana-Alsina J, Frasier S (2015) Atmospheric boundary-layer height estimation using a Kalman filter and a frequency-modulated continuous-wave radar. IEEE Trans Geosci Remote Sens 53(6):3338–3349

    Article  Google Scholar 

  • Li Y, Zhu L, Zhao X, Li S, Yan Y (2013) Urbanization impact on temperature change in China with emphasis on land cover change and human activity. J Climate 26:8765–8780

    Article  Google Scholar 

  • Li Z, Guo J, Ding A, Liao H, Liu J, Sun Y, Wang T, Xue H, Zhang H, Zhu B (2017) Aerosol and boundary-layer interactions and impact on air quality. Natl Sci Rev 4(6):810–833

    Article  Google Scholar 

  • Liu B, Ma Y, Guo J, Gong W, Zhang Y, Mao F, Li J, Guo X, Shi Y (2019) Boundary layer heights as derived from ground-based radar wind profiler in Beijing. IEEE Transac Geosci and Remote Sens 57(10):8095–8104

    Article  Google Scholar 

  • Liu B, Guo J, Gong W, Shi L, Zhang Y, Ma Y (2020) Characteristics and performance of wind profiles as observed by the radar wind profiler network of China. Atmos Meas Tech 13:4589–4600

    Article  Google Scholar 

  • Mahrt L (1996) The bulk aerodynamic formulation over heterogeneous surfaces. Bound-Layer Meteorol 78:87–119

    Article  Google Scholar 

  • Mahrt L, Richardson S, Seaman N, Stauffer D (2010) Nonstationary drainage flows and motions in the cold pool. Tellus 62A:698–705

    Article  Google Scholar 

  • Miao Y, Hu X-M, Liu S, Qian T, Xue M, Zheng Y, Wang S (2015) Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing-Tianjin-Hebei region and implications for air quality. J Adv Model Earth Syst 7:1602–1626

    Article  Google Scholar 

  • Miao Y, Guo J, Liu S, Liu H, Zhang G, Yan Y, He J (2017a) Relay transport of aerosols to Beijing-Tianjin-Hebei region by multi-scale atmospheric circulations. Atmos Environ 165:35–45

    Article  Google Scholar 

  • Miao Y, Guo J, Liu S, Liu H, Li Z, Zhang W, Zhai P (2017b) Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution. Atmos Chem Phys 17:3097–3110

    Article  Google Scholar 

  • Molod A, Salmun H, Dempsey M (2015) Estimating planetary boundary layer heights from NOAA profiler network wind profiler data. J Atmos Ocean Technol 32:1545–1561

    Article  Google Scholar 

  • Mues A, Rupakheti M, Münkel C, Lauer A, Bozem H, Hoor P, Butler T, Lawrence MG (2017) Investigation of the mixing layer height derived from ceilometer measurements in the Kathmandu Valley and implications for local air quality. Atmos Chem Phys 17:8157–8176

    Article  Google Scholar 

  • Oke TR, Maxwell GB (1975) Urban heat island dynamics in Montreal and Vancouver. Atmos Environ 9:191–200

    Article  Google Scholar 

  • Pal S, Xueref-Remy I, Ammoura L, Chazette P, Gibert F, Royer P, Dieudonné E, Dupont JC, Haeffelin M, Lac C, Lopez M, Morille Y, Ravetta F (2012) Spatiotemporal variability of the atmospheric boundary layer depth over the Paris agglomeration: An assessment of the impact of the urban heat island intensity. Atmos Environ 63:261–275

    Article  Google Scholar 

  • Pal S, Lee TR (2019) Advected air mass reservoirs in the downwind of mountains and their roles in overrunning boundary layer depths over the plains. Geophys Res Lett 46(10):140–149

    Google Scholar 

  • Pearson G, Davies F, Collier C (2010) Remote sensing of the tropical rain forest boundary layer using pulsed Doppler lidar. Atmos Chem Phys 10:5891–5901

    Article  Google Scholar 

  • Rotach MW, Vogt R, Bernhofer D, Batchvarova E, Christen A, Clappier A, Fedderson B, Grynning S-E, Martucci G, Mayer H, Mitev V, Oke TR, Parlow E, Richner H, Roth M, Roulet YA, Ruffieux D, Salmond J, Schatzmann M, Voogt J (2005) BUBBLE—an urban boundary layer meteorology project. Theor Appl Climatol 81:231–261

    Article  Google Scholar 

  • Roth M (2007) Review of urban climate research in (sub) tropical regions. Int J Climatol 27:1859–1873

    Article  Google Scholar 

  • Reddy KK, Kozu T, Ohno Y, Nakamura K, Higuchi A, Madhu Chandra Reddy K, Anandan VK, Srinivasulu P, Jain AR, Rao PB, Ranga Rao R, Viswanathan G, Narayana Rao D (2002) Planetary boundary layer and precipitation studies using lower atmospheric wind profiler over tropical. India Radio Sci 37(14):1–21

    Google Scholar 

  • Rendón AM, Salazar JF, Palacio CA, Wirth V, Brötz B (2014) Effects of urbanization on the temperature inversion breakup in a Mountain Valley with implications for air quality. J Appl Meteorol Climatol 53:840–858

    Article  Google Scholar 

  • Sánchez MP, de Oliveira AP, Varona RP, Tito JV, Codato G, Ribeiro FND, Filho EPM, da Silveira LCD (2020) Rawinsonde-based analysis of the urban boundary layer in the metropolitan region of São Paulo. Brazil. Earth Space Sci 7:e2019EA000781

    Google Scholar 

  • Schween JH, Hirsikko A, Löhnert U, Crewell S (2014) Mixing-layer height retrieval with ceilometer and Doppler lidar: from case studies to longterm assessment. Atmos Meas Tech 7:3685–3704

    Article  Google Scholar 

  • Seibert P, Beyrich F, Gryning SE, Joffre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34(7):1001–1027

    Article  Google Scholar 

  • Seidel DJ, Ao CO, Li K (2010) Estimating climatological planetary boundary layer heights from radiosonde observations: comparison of methods and uncertainty analysis. J Geophys Res Atmos 115:D16113

    Article  Google Scholar 

  • Shi Y, Hu F, Xiao Z, Fan G, Zhang Z (2020) Comparison of four different types of planetary boundary layer heights during a haze episode in Beijing. Sci Total Environ 711:134928

    Article  Google Scholar 

  • Singh N, Solanki R, Ojha N, Janssen RH, Pozzer A, Dhaka SK (2016) Boundary layer evolution over the central Himalayas from radio wind profiler and model simulations. Atmos Chem Phys 16(16):10559–10572

    Article  Google Scholar 

  • Solanki R, Macatangay R, Sakulsupich V, Sonkaew T, Mahapatra PS (2019) Mixing layer height retrievals from MiniMPL measurements in the Chiang Mai valley: implications for particulate matter pollution. Front Earth Sci 7:308

    Article  Google Scholar 

  • Song X, Zhang J, AghaKouchak A, Roy SS, Xuan Y, Wang G, He R, Wang X, Liu C (2014) Rapid urbanization and changes in spatiotemporal characteristics of precipitation in Beijing metropolitan area. J Geophys Res Atmos 119(11):250–271

    Google Scholar 

  • Steeneveld GJ, Koopmans S, Heusinkveld BG, van Hove LWA, Holtslag AAM (2011) Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in the Netherlands. J Geophys Res Atmos 116:D20129

    Article  Google Scholar 

  • Stewart JQ, Whiteman CD, Steenburgh WJ, Bian X (2002) A climatological study of thermally driven wind systems of the U.S. Intermountain West. Bull Am Meteorol Soc 83:699–708

    Article  Google Scholar 

  • Stull RB (1988) An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Takane Y, Kondo H, Kusaka H, Katagi J, Nagafuchi O, Nakazawa K, Kaneyasu N, Miyakami Y (2017) Foehnlike wind with a traditional Foehn effect plus dry-Diabatic heating from the ground surface contributing to high temperatures at the end of a leeward area. J Appl Meteorol Climatol 56(7):2067–2079

    Article  Google Scholar 

  • Tang G, Zhang J, Zhu X, Song T, Münkel C, Hu B, Schäfer K, Liu Z, Zhang J, Wang L, Xin J, Suppan P, Wang Y (2016) Mixing layer height and its implications for air pollution over Beijing, China. Atmos Chem Phys 16:2459–2475

    Article  Google Scholar 

  • Theeuwes NE, Steeneveld GJ, Ronda RJ, Rotach MW, Holtslag AAM (2015) Cool city mornings by urban heat. Environ Res Lett 10:114022

    Article  Google Scholar 

  • Theeuwes NE, Barlow JF, Teuling AJ, Grimmond CSB, Kotthaus S (2019) Persistent cloud cover over mega-cities linked to surface heat release. npj Clim. Atmos Sci 2:1–15

    Google Scholar 

  • Tucker SC, Senff CJ, Weickmann AM, Brewer WA, Banta RM, Sandberg SP, Law DC, Hardesty RM (2009) Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles. J Atmos Ocean Technol 26:673–688

    Article  Google Scholar 

  • Wang J, Li CC, Hu LY, Zhao YY, Huang HB, Gong P (2015) Seasonal land cover dynamics in Beijing derived from Landsat 8 data using a spatio-temporal contextual approach. Remote Sens 7(1):865–881

    Article  Google Scholar 

  • Wang K, Jiang S, Wang J, Zhou C, Wang X, Lee X (2017) Comparing the diurnal and seasonal variabilities of atmospheric and surface urban heat islands based on the Beijing urban meteorological network. J Geophys Res Atmos 122:2131–2154

    Article  Google Scholar 

  • Whiteman CD, Bian X, Zhong S (1999) Wintertime evolution of the temperature inversion in the Colorado Plateau basin. J Appl Meteorol 38:1103–1117

    Article  Google Scholar 

  • Wyngaard JC, LeMone MA (1980) Behavior of the refractive index structure parameter in the entraining convective boundary layer. J Atmos Sci 37:1573–1585

    Article  Google Scholar 

  • Xiang Y, Zhang T, Liu J, Lv L, Dong Y, Chen Z (2019) Atmosphere boundary layer height and its effect on air pollutants in Beijing during winter heavy pollution. Atmos Res 215:305–316

    Article  Google Scholar 

  • Xu Z, Chen H, Guo J, Zhang W (2021) Contrasting effect of soil moisture on the daytime boundary layer under different thermodynamic conditions in summer over china. Geophys Res Lett 48:e2020GL090989

    Article  Google Scholar 

  • Yang P, Ren GY, Liu WD (2013) Spatial and temporal characteristics of Beijing urban heat island (UHI) intensity. J Appl Meteor Climatol 52:1803–1816

    Article  Google Scholar 

  • Yang Y, Zheng Z, Yim SYL, Roth M, Ren G, Gao Z, Wang J, Li QX, Shi CE, Ning GC, Li YB (2020a) PM2.5 pollution modulates wintertime urban heat island intensity in the Beijing-Tianjin-Hebei Megalopolis, China. Geophys Res Lett 47:88

    Article  Google Scholar 

  • Yang Y, Fan S, Wang L, Gao Z, Zhang Y, Zou H, Miao S, Li Y, Huang M, Yim SHL, Lolli S (2020b) Diurnal evolution of the wintertime boundary layer in urban Beijing, China: insights from Doppler lidar and a 325-m meteorological tower. Remote Sens 12:3935

    Article  Google Scholar 

  • Yu H, Liu S, Dickinson RE (2002) Radiative effects of aerosol on the evolution of the atmospheric boundary layer. J Geophys Res Atmos 107(D12):4142

    Article  Google Scholar 

  • Yu M, González J, Miao S, Ramamurthy P (2019) On the assessment of a cooling tower scheme for high-resolution numerical weather modeling for urban areas. J Appl Meteor Climatol 58:1399–1415

    Article  Google Scholar 

  • Zardi D, Whiteman CD (2013) Diurnal mountain wind systems. In: Chow FK, De Wekker SFJ, Snyder BJ (eds) Mountain weather research and forecasting. Recent progress and current challenges. Springer atmospheric sciences. Springer, Dordrecht, pp 35–119

    Chapter  Google Scholar 

  • Zhang T, Che H, Gong Z, Wang Y, Wang J, Yang Y, Gui K, Guo B (2020a) The two-way feedback effect between aerosol pollution and planetary boundary layer structure on the explosive rise of PM2.5 after the “Ten Statements of Atmosphere” in Beijing. Sci Total Environ 709:136259

    Article  Google Scholar 

  • Zhang W, Guo J, Miao Y, Liu H, Song Y, Fang Z, He J, Lou M, Yan Y, Li Y, Zhai P (2018) On the summertime planetary boundary layer with different thermodynamic stability in China: a radiosonde perspective. J Climate 31(4):1451–1465

    Article  Google Scholar 

  • Zhang Y, Guo J, Yang Y, Wang Y, Yim SHL (2020b) Vertical wind shear modulates particulate matter pollutions: a perspective from Radar wind profiler observations in Beijing, China. Remote Sens 12(3):546

    Article  Google Scholar 

  • Zheng Z, Ren G, Wang H, Dou J, Gao Z, Duan C, Li Y, Ngarukiyimana J, Zhao C, Cao C, Jiang M, Yang Y (2018) Relationship between fine particle pollution and the urban heat island in Beijing, China: observational evidence. Bound-Layer Meteorol 169(1):93–113

    Article  Google Scholar 

  • Zhou D, Zhao S, Zhang L, Sun G, Liu Y (2015) The footprint of urban heat island effect in China. Sci Rep 5:11160

    Article  Google Scholar 

  • Zhu X, Li D, Zhou W, Ni G, Cong Z, Sun T (2017) An idealized LES study of urban modification of moist convection. Q J R Meteorol Soc 143:3228–3243

    Article  Google Scholar 

  • Zhu X, Tang G, Guo J, Hu B, Song T, Wang L, Xin J, Gao W, Münkel C, Schäfer K, Li X, Wang Y (2018) Mixing layer height on the North China Plain and meteorological evidence of serious air pollution in southern Hebei. Atmos Chem Phys 18(7):4897–4910

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Science and Technology of the People’s Republic of China under Grant 2017YFC1501401, and the National Natural Science Foundation of China under Grants 41771399. The radar wind profiler data and related meteorological data that support the findings of this study are generously provided by the National Meteorological Information Centre, China Meteorological Administration (http://data.cma.cn/en). We also wish to thank the anonymous reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianping Guo or Jian Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solanki, R., Guo, J., Li, J. et al. Atmospheric-Boundary-Layer-Height Variation over Mountainous and Urban Sites in Beijing as Derived from Radar Wind-Profiler Measurements. Boundary-Layer Meteorol 181, 125–144 (2021). https://doi.org/10.1007/s10546-021-00639-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-021-00639-9

Keywords

Navigation