Skip to main content
Log in

Intermittent Surface Renewals and Methane Hotspots in Natural Peatlands

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Peatlands account for a large fraction of global methane (\(\mathrm {CH_4}\)) emissions. These environments exchange \(\mathrm {CH_4}\) with the atmosphere via three main mechanisms: diffusion through the peat and water, plant-mediated diffusion, and sporadic release of \(\mathrm {CH_4}\) bubbles. While rapid advances have been made in measuring \(\mathrm {CH_4}\) fluxes above peatlands on sub-daily time scales, partitioning \(\mathrm {CH_4}\) fluxes into ebullition and background diffusion remains a formidable challenge. Such partitioning is becoming necessary for future projection of methane concentration as atmospheric, hydrologic, and edaphic drivers of these two types of methane releases may differ significantly. Using surface renewal theory, a framework for partitioning measured methane fluxes based on the mass transfer mechanism is introduced with the overall objective of characterizing the intermittency of \(\mathrm {CH_4}\) source and its strength at the ground. This approach is tested using a large dataset of measured turbulent air velocity and multiple scalar concentrations (including heat, water vapour, and carbon dioxide) for flow above a boreal peatland in Finland. The transport efficiencies of different gas transfer mechanisms are then evaluated for scalars characterized by background diffusion (e.g., water vapour) or by intermittent sources (e.g., methane). Whether environmental variables such as water-table levels and atmospheric conditions have a signature on the occurrence of \(\mathrm {CH_4}\) hotspots is then investigated. Building upon the classical surface renewal theory, this work introduces a novel approach for inferring the intermittent nature of scalar sources at the ground and for exploring how non-homogeneity affects the efficiency of gas turbulent transport in the atmospheric surface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Antonia R, Chambers A, Friehe C, Van Atta C (1979) Temperature ramps in the atmospheric surface layer. J Atmos Sci 36(1):99–108

    Article  Google Scholar 

  • Asher WE, Pankow JF (1991) Prediction of gas/water mass transport coefficients by a surface renewal model. Environ Sci Technol 25(7):1294–1300

    Article  Google Scholar 

  • Assouline S, Tyler SW, Tanny J, Cohen S, Bou-Zeid E, Parlange M, Katul GG (2008) Evaporation from three water bodies of different sizes and climates: measurements and scaling analysis. Adv Water Resour 31(1):160–172

    Article  Google Scholar 

  • Aulakh MS (2001) Methane emissions from rice fields-quantification, mechanisms, role of management, and mitigation options. Adv Agron 70:193–260

    Article  Google Scholar 

  • Baker J, Norman J, Bland W (1992) Field-scale application of flux measurement by conditional sampling. Agric For Meteorol 62(1–2):31–52

    Article  Google Scholar 

  • Baldocchi D, Detto M, Sonnentag O, Verfaillie J, Teh YA, Silver W, Kelly NM (2012) The challenges of measuring methane fluxes and concentrations over a peatland pasture. Agric For Meteorol 153:177–187

    Article  Google Scholar 

  • Bartlett KB, Harriss RC (1993) Review and assessment of methane emissions from wetlands. Chemosphere 26(1–4):261–320

    Article  Google Scholar 

  • Beetz S, Liebersbach H, Glatzel S, Jurasinski G, Buczko U, Höper H (2013) Effects of land use intensity on the full greenhouse gas balance in an Atlantic peat bog. Biogeosciences 10(2):1067–1082

    Article  Google Scholar 

  • Brock FV (1986) A nonlinear filter to remove impulse noise from meteorological data. J Atmos Ocean Tech 3(1):51–58

    Article  Google Scholar 

  • Brutsaert W (1965) A model for evaporation as a molecular diffusion process into a turbulent atmosphere. J Geophys Res 70(20):5017–5024

    Article  Google Scholar 

  • Brutsaert W (1975) A theory for local evaporation (or heat transfer) from rough and smooth surfaces at ground level. Water Res Res 11(4):543–550

    Article  Google Scholar 

  • Brutsaert W (2013) Evaporation into the atmosphere: theory, history and applications, vol 1. Springer, Berlin

    Google Scholar 

  • Bubier J, Moore T, Roulet N (1993) Methane emissions from wetlands in the midboreal region of northern Ontario, Canada. Ecology 74(8):2240–2254

    Article  Google Scholar 

  • Bullin J, Dukler A (1972) Random eddy models for surface renewal: formulation as a stochastic process. Chem Eng Sci 27(2):439–442

    Article  Google Scholar 

  • Businger JA, Oncley SP (1990) Flux measurement with conditional sampling. J Atmos Ocean Tech 7(2):349–352

    Article  Google Scholar 

  • Byrne KA, Chojnicki B, Christensen TR, Drosler M, Frolking S, Lindroth A, Mailhammer J, Malmer N, Selin P, Turunen J et al (2004) Eu peatlands: current carbon stocks and trace gas fluxes. Geosphere-Biosphere Centre, University of Lund, Sweden, Tech Rep Report 4/2004 to Concerted action: synthesis of the European Greenhouse Gas Budget

  • Cava D, Katul G, Sempreviva AM, Giostra U, Scrimieri A (2008) On the anomalous behaviour of scalar flux-variance similarity functions within the canopy sub-layer of a dense alpine forest. Boundary-Layer Meteorol 128(1):33–57

    Article  Google Scholar 

  • Clayson C, Fairall C, Curry J (1996) Evaluation of turbulent fluxes at the ocean surface using surface renewal theory. J Geophys Res Oceans 101(C12):28503–28513

    Article  Google Scholar 

  • Danckwerts P (1951) Significance of liquid-film coefficients in gas absorption. Ind Eng Chem 43(6):1460–1467

    Article  Google Scholar 

  • Foken T (2006) 50 years of the Monin–Obukhov similarity theory. Boundary-Layer Meteorol 119(3):431–447

    Article  Google Scholar 

  • Foken T, Nappo CJ (2008) Micrometeorology, vol 2. Springer, Berlin

    Google Scholar 

  • Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78(1–2):83–105

    Article  Google Scholar 

  • Fortescue G, Pearson J (1967) On gas absorption into a turbulent liquid. Chem Eng Sci 22(9):1163–1176

    Article  Google Scholar 

  • Frisch AS, Businger JA (1973) A study of convective elements in the atmospheric surface layer. Boundary-Layer Meteorol 3(3):301–328

    Article  Google Scholar 

  • Garbe CS, Jähne B, Haußecker H (2002) Measuring the sea surface heat flux and probability distribution of surface renewal events, American Geophysical Union (AGU), pp 109–114

  • Garbe CS, Schimpf U, Jähne B (2004) A surface renewal model to analyze infrared image sequences of the ocean surface for the study of air-sea heat and gas exchange. J Geophys Res Oceans 109(C8):1–18

    Article  Google Scholar 

  • Haghighi E, Or D (2013) Evaporation from porous surfaces into turbulent airflows: coupling eddy characteristics with pore scale vapor diffusion. Water Resour Res 49(12):8432–8442

    Article  Google Scholar 

  • Haghighi E, Or D (2015a) Linking evaporative fluxes from bare soil across surface viscous sublayer with the Monin–Obukhov atmospheric flux-profile estimates. J Hydrol 525:684–693

    Article  Google Scholar 

  • Haghighi E, Or D (2015b) Thermal signatures of turbulent airflows interacting with evaporating thin porous surfaces. Int J Heat Mass Transf 87:429–446

    Article  Google Scholar 

  • Hanratty TJ (1956) Turbulent exchange of mass and momentum with a boundary. AIChE J 2(3):359–362

    Article  Google Scholar 

  • Harriott P (1962) A random eddy modification of the penetration theory. Chem Eng Sci 17(3):149–154

    Article  Google Scholar 

  • Herbst M, Friborg T, Ringgaard R, Soegaard H (2011) Interpreting the variations in atmospheric methane fluxes observed above a restored wetland. Agric For Meteorol 151(7):841–853

    Article  Google Scholar 

  • Higbie R (1935) The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans AIChE 31:365–389

    Google Scholar 

  • Hill RJ (1989) Implications of Monin–Obukhov similarity theory for scalar quantities. J Atmos Sci 46(14):2236–2244

    Article  Google Scholar 

  • Hommeltenberg J, Mauder M, Drösler M, Heidbach K, Werle P, Schmid HP (2014) Ecosystem scale methane fluxes in a natural temperate bog-pine forest in southern germany. Agric For Meteorol 198:273–284

    Article  Google Scholar 

  • Horvath IR, Chatterjee SG (2018) A surface renewal model for unsteady-state mass transfer using the generalized Danckwerts age distribution function. R Soc Open Sci 5(5):172423

    Article  Google Scholar 

  • Iwata H, Hirata R, Takahashi Y, Miyabara Y, Itoh M, Iizuka K (2018) Partitioning eddy-covariance methane fluxes from a shallow lake into diffusive and ebullitive fluxes. Boundary-Layer Meteorol 169(3):413–428

    Article  Google Scholar 

  • Katul G, Liu H (2017) A Kolmogorov–Brutsaert structure function model for evaporation into a turbulent atmosphere. Water Resour Res 53(5):3635–3644

    Article  Google Scholar 

  • Katul G, Hsieh CI, Oren R, Ellsworth D, Phillips N (1996) Latent and sensible heat flux predictions from a uniform pine forest using surface renewal and flux variance methods. Boundary-Layer Meteorol 80(3):249–282

    Article  Google Scholar 

  • Katul G, Mammarella I, Grönholm T, Vesala T (2018a) A structure function model recovers the many formulations for air-water gas transfer velocity. Water Resour Res 54(9):5905–5920

    Article  Google Scholar 

  • Katul G, Peltola O, Grönholm T, Launiainen S, Mammarella I, Vesala T (2018b) Ejective and sweeping motions above a peatland and their role in relaxed-eddy-accumulation measurements and turbulent transport modelling. Boundary-Layer Meteorol 169(2):163–184

    Article  Google Scholar 

  • Katul G, Li D, Manes C (2019) A primer on turbulence in hydrology and hydraulics: the power of dimensional analysis. Wiley Interdiscip Rev Water 6(2):e1336

    Article  Google Scholar 

  • Katul GG, Parlange MB, Chu CR (1994) Intermittency, local isotropy, and non-Gaussian statistics in atmospheric surface layer turbulence. Phys Fluids 6(7):2480–2492

    Article  Google Scholar 

  • Katul GG, Konings AG, Porporato A (2011) Mean velocity profile in a sheared and thermally stratified atmospheric boundary layer. Phys Rev lett 107(26):268502

    Article  Google Scholar 

  • Kermani A, Shen L (2009) Surface age of surface renewal in turbulent interfacial transport. Geophys Res Lett 36(10):1–5

    Article  Google Scholar 

  • Knox SH, Jackson RB, Poulter B, McNicol G, Fluet-Chouinard E, Zhang Z, Hugelius G, Bousquet P, Canadell JG, Saunois M et al (2019) Fluxnet-CH4 synthesis activity: objectives, observations, and future directions. Bull Am Meteorol Soc 100(12):2607–2632

    Article  Google Scholar 

  • Komori S, Nagaosa R, Murakami Y (1990) Mass transfer into a turbulent liquid across the zero-shear gas–liquid interface. AIChE J 36(6):957–960

    Article  Google Scholar 

  • Koppel L, Patel R, Holmes J (1966) Statistical models for surface renewal in heat and mass transfer: Part i. Dependence of average transport coefficients on age distribution. AIChE J 12(5):941–946

    Article  Google Scholar 

  • Kumar P, Foufoula-Georgiou E (1997) Wavelet analysis for geophysical applications. Rev Geophys 35(4):385–412

    Article  Google Scholar 

  • Lai D (2009) Methane dynamics in northern peatlands: a review. Pedosphere 19(4):409–421

    Article  Google Scholar 

  • Lamont JC, Scott D (1970) An eddy cell model of mass transfer into the surface of a turbulent liquid. AIChE J 16(4):513–519

    Article  Google Scholar 

  • Li D, Katul GG, Liu H (2018) Intrinsic constraints on asymmetric turbulent transport of scalars within the constant flux layer of the lower atmosphere. Geophys Res Lett 45(4):2022–2030

    Article  Google Scholar 

  • Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693

    Article  Google Scholar 

  • Männistö E, Korrensalo A, Alekseychik P, Mammarella I, Peltola O, Vesala T, Tuittila ES (2019) Multi-year methane ebullition measurements from water and bare peat surfaces of a patterned boreal bog. Biogeosciences 16(11):2409–2421

    Article  Google Scholar 

  • Mattson MD, Likens GE (1990) Air pressure and methane fluxes. Nature 347(6295):718–719

    Article  Google Scholar 

  • Meneveau C (1991) Analysis of turbulence in the orthonormal wavelet representation. J Fluid Mech 232:469–520

    Article  Google Scholar 

  • Monin A, Obukhov A (1954) Dimensionless characteristics of turbulence in the surface layer. Akad Nauk SSSR Geofiz Inst Tr 24:163–187

    Google Scholar 

  • Moore TR, De Young A, Bubier JL, Humphreys ER, Lafleur PM, Roulet NT (2011) A multi-year record of methane flux at the Mer Bleue bog, southern Canada. Ecosystems 14(4):646

    Article  Google Scholar 

  • Musschenga E, Hamersma P, Fortuin J (1992) Momentum, heat and mass transfer in turbulent pipe flow: the extended random surface renewal model. Chem Eng Sci 47(17–18):4373–4392

    Article  Google Scholar 

  • National Land Survey of Finland (2018) Topographic database. https://www.maanmittauslaitos.fi/en/opendata-licence-cc40

  • Pattey E, Desjardins R, Rochette P (1993) Accuracy of the relaxed eddy-accumulation technique, evaluated using co 2 flux measurements. Boundary-Layer Meteorol 66(4):341–355

    Article  Google Scholar 

  • Peltola O, Mammarella I, Haapanala S, Burba G, Vesala T (2013) Field intercomparison of four methane gas analyzers suitable for eddy covariance flux measurements. Biogeosciences 10(6):3749–3765

    Article  Google Scholar 

  • Peltola O, Hensen A, Helfter C, Belelli Marchesini L, Bosveld F, Van Den Bulk W, Elbers J, Haapanala S, Holst J, Laurila T et al (2014) Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements: the InGOS inter-comparison field experiment. Biogeosci Discuss 11(1):797–852

    Google Scholar 

  • Perlmutter D (1961) Surface-renewal models in mass transfer. Chem Eng Sci 16(3–4):287–296

    Article  Google Scholar 

  • Qiu J, Su HB, Watanabe T, Brunet Y et al (1995) Surface renewal analysis: a new method to obtain scalar fluxes. Agric For Meteorol 74(1–2):119–137

    Google Scholar 

  • Rinne J, Riutta T, Pihlatie M, Aurela M, Haapanala S, Tuovinen JP, Tuittila ES, Vesala T (2007) Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus B Chem Phys Meteorol 59(3):449–457

    Article  Google Scholar 

  • Riutta T, Korrensalo A, Laine AM, Laine J, Tuittila ES (2020) Interacting effects of vegetation components and water level on methane dynamics in a boreal fen. Biogeosciences 17(3):727–740

    Article  Google Scholar 

  • Scanlon TM, Albertson JD (2001) Turbulent transport of carbon dioxide and water vapor within a vegetation canopy during unstable conditions: identification of episodes using wavelet analysis. J Geophys Res Atmos 106(D7):7251–7262

    Article  Google Scholar 

  • Schaller C, Göckede M, Foken T (2017) Flux calculation of short turbulent events-comparison of three methods. Atmos Meas Tech 10(3):869–880

    Article  Google Scholar 

  • Schaller C, Kittler F, Foken T, Göckede M (2019) Characterisation of short-term extreme methane fluxes related to non-turbulent mixing above an arctic permafrost ecosystem. Atmos Chem Phys 19(6):4041–4059

    Article  Google Scholar 

  • Seo YG, Lee WK (1988) Single-eddy model for random surface renewal. Chem Eng Sci 43(6):1395–1402

    Article  Google Scholar 

  • Spano D, Snyder R, Duce P et al (1997) Surface renewal analysis for sensible heat flux density using structure functions. Agric For Meteorol 86(3–4):259–271

    Article  Google Scholar 

  • Starkenburg D, Metzger S, Fochesatto GJ, Alfieri JG, Gens R, Prakash A, Cristóbal J (2016) Assessment of despiking methods for turbulence data in micrometeorology. J Atmos Ocean Tech 33(9):2001–2013

    Article  Google Scholar 

  • Stull RB (2012) An introduction to boundary layer meteorology, vol 13. Springer, Berlin

    Google Scholar 

  • Takagaki N, Kurose R, Kimura A, Komori S (2016) Effect of Schmidt number on mass transfer across a sheared gas–liquid interface in a wind-driven turbulence. Sci Rep 6(37):059

    Google Scholar 

  • Theofanous T, Houze R, Brumfield L (1976) Turbulent mass transfer at free, gas–liquid interfaces, with applications to open-channel, bubble and jet flows. Int J Heat Mass Transf 19(6):613–624

    Article  Google Scholar 

  • Thomson G, Silver R (1972) Reynolds flux and Danckwerts surface renewal theory. Int J Heat Mass Transf 15(6):1284–1287

    Article  Google Scholar 

  • Warhaft Z (2000) Passive scalars in turbulent flows. Ann Rev Fluid Mech 32(1):203–240

    Article  Google Scholar 

  • Wyngaard JC (2010) Turbulence in the atmosphere. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Zorzetto E, Bragg A, Katul G (2018) Extremes, intermittency, and time directionality of atmospheric turbulence at the crossover from production to inertial scales. Phys Rev Fluids 3(9):094604

    Article  Google Scholar 

Download references

Acknowledgements

EZ acknowledges support from the National Aeronautics and Space Administration (NASA NESSF Fellowship 80NSSC17K0364). GK was partially supported by the US National Science Foundation (NSF-AGS-1644382, NSF-IOS-1754893, NSF-AGS-2028633) and the University of Helsinki during a sabbatical leave from Duke University in 2017. The Python code used in this study is freely available at https://github.com/EnricoZorzetto/methane_isr under the MIT license.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Zorzetto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zorzetto, E., Peltola, O., Grönholm, T. et al. Intermittent Surface Renewals and Methane Hotspots in Natural Peatlands. Boundary-Layer Meteorol 180, 407–433 (2021). https://doi.org/10.1007/s10546-021-00637-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-021-00637-x

Keywords

Navigation