Skip to main content

Advertisement

Log in

Valorization of pea pod, celery root peel, and mixed-vegetable peel as a feedstock for biocellulose production from Komagataeibacter hansenii DSM 5602

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Currently, recycling and reuse of wastes to obtain high value-added products are substantial issues for development of sustainable and economic processes. Among these wastes, evaluation of food waste has been received significant attention due to scarcity in undeveloped countries, food security, and environmental problems. In general, this study focused on the investigation of cheap carbon sources and re-utilization of food waste for the production of bacterial cellulose (BC). Therefore, pea pod, celery root peel, and mixed-vegetable peel were evaluated to produce BC from Komagataeibacter hansenii (waste-based Kh-BC) in the present work. Subsequent to the BC production from specified wastes, chemical structure, thermal properties, scanning electron microscope (SEM) analysis, water uptake, and antibacterial activity of BC were analyzed. Among all wastes studied, mixed-vegetable peel and pea pod were positive influencers on BC synthesis and Fourier-transform infrared (FT-IR) spectra of BC membranes produced from wastes were very similar to that obtained from mannitol as a control. Additionally, waste-based Kh-BC has higher biodegradability and thermal stability than the Kh-BC produced from the control medium. Although it has a fragile structure, its water holding capacity and porous structure appear similar to standard BC. Moreover, waste-based Kh-BC could be impregnated with antibiotics to obtain the antibacterial BC membrane. Therefore, the present work showed that vegetable wastes could be valorized for BC production and waste-based Kh-BC is a promising biopolymer candidate for medical and pharmaceutical applications according to its properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. van der Meer Y (2017) Sustainable bio-based materials: opportunities and challenges. The International Conference for Biotechnology, Biotech France 2017. Conference Proceedings 1–5. https://doi.org/10.26799/cp-biotechfrance2017

  2. Khoshnevisan K, Maleki H, Samadian H, Shahsavari S, Sarrafzadeh MH, Larijani B, Dorkoosh FA, Haghpanah V, Khorramizadeh MR (2018) Cellulose acetate electrospun nanofibers for drug delivery systems: applications and recent advances. Carbohydr Polym 198:131–141. https://doi.org/10.1016/j.carbpol.2018.06.072

    Article  Google Scholar 

  3. Salihoglu G, Salihoglu NK, Ucaroglu S, Banar M (2018) Food loss and waste management in Turkey. Bioresour Technol 248:88–99. https://doi.org/10.1016/j.biortech.2017.06.083

    Article  Google Scholar 

  4. Valdez-Calderón A, Barraza-Salas M, Quezada-Cruz M, Angeles-Padilla AF, Carrillo-Ibarra S, Rodríguez M, Rojas-Avelizapa NG, Garrido-Hernández A, Rivas-Castillo AM (2020) Production of polyhydroxybutyrate (PHB) by a novel Klebsiella pneumoniae strain using low-cost media from fruit peel residues. Biomass Conv Bioref 18:1–14. https://doi.org/10.1007/s13399-020-01147-5

    Article  Google Scholar 

  5. Verma N, Kumar V (2020) Utilization of bottle gourd vegetable peel waste biomass in cellulase production by Trichoderma reesei and Neurospora crassa. Biomass Conv Bioref 15:1–10. https://doi.org/10.1007/s13399-020-00727-9

    Article  Google Scholar 

  6. Nuroğlu E (2019) Zero Waste Project: Turkey’s role in waste cycle. Anadolu Agency. https://www.aa.com.tr/en/economy/zero-waste-project-turkey-s-role-in-waste-cycle/1521262/. Accessed 26 May 2021

  7. Al-Rumaihi A, McKay G, Mackey HR, Al-Ansari T (2020) Environmental impact assessment of food waste management using two composting techniques. Sustainability 12:1595. https://doi.org/10.3390/su12041595

    Article  Google Scholar 

  8. Forbes H, Quested T, O’Connor C (2021) Food waste index report 2021. In: Forbes H, Quested T, O’Connor C (eds) Food waste amounts: measured estimates and extrapolations. United Nations Environment Programme (UNEP), Nairobi, pp 54–70

  9. Barrera EL, Hertel T (2021) Global food waste across the income spectrum: implications for food prices, production and resource use. Food Policy 98:101874. https://doi.org/10.1016/j.foodpol.2020.101874

    Article  Google Scholar 

  10. Yildiz G (2019) ‘Turkey wastes $37.7B worth of food per year’. Anadolu Agency. https://www.aa.com.tr/en/economy/turkey-wastes-377b-worth-of-food-per-year/1596595. Accessed 26 May 2021

  11. Costa AF, Almeida FC, Vinhas GM, Sarubbo LA (2017) Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Front Microbial 8:2027. https://doi.org/10.3389/fmicb.2017.02027

    Article  Google Scholar 

  12. Khan H, Kadam A, Dutt D (2020) Studies on bacterial cellulose produced by a novel strain of Lactobacillus genus. Carbohydr Polym 229:115513. https://doi.org/10.1016/j.carbpol.2019.115513

    Article  Google Scholar 

  13. Du R, Wang Y, Zhao F, Qiao X, Song Q, Li S, Kim RC, Pan L, Han Y, Xiao H, Zhou Z (2020) Production, optimization and partial characterization of bacterial cellulose from Gluconacetobacter xylinus TJU-D2. Waste Biomass Valor 11:1681–1690. https://doi.org/10.1007/S12649-018-0440-5

    Article  Google Scholar 

  14. Zhao H, Xia J, Wang J, Yan X, Wang C, Lei T, Xian M, Zhang H (2018) Production of bacterial cellulose using polysaccharide fermentation wastewater as inexpensive nutrient sources. Biotechnol Biotechnol Equip 32:350–356. https://doi.org/10.1080/13102818.2017.1418673

    Article  Google Scholar 

  15. Gullo M, La China S, Falcone PM, Giudici P (2018) Biotechnological production of cellulose by acetic acid bacteria: current state and perspectives. Appl Microbiol Biotechnol 102:6885–6898. https://doi.org/10.1007/s00253-018-9164-5

    Article  Google Scholar 

  16. Gullo M, La China S, Petroni G, Di Gregorio S, Giudici P (2019) Exploring K2G30 genome: a high bacterial cellulose producing strain in glucose and mannitol based media. Front Microbiol 10:58. https://doi.org/10.3389/fmicb.2019.00058

    Article  Google Scholar 

  17. Portela R, Leal CR, Almeida PL, Sobral RG (2019) Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microb Biotechnol 12:586–610. https://doi.org/10.1111/1751-7915.13392

    Article  Google Scholar 

  18. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. https://doi.org/10.1002/anie.200460587

    Article  Google Scholar 

  19. Bandyopadhyay S, Saha N, Saha P (2018) Characterization of bacterial cellulose produced using media containing waste apple juice. Appl Biochem Microbiol 54:649–657. https://doi.org/10.1134/s0003683818060042

    Article  Google Scholar 

  20. Azeredo H, Barud H, Farinas CS, Vasconcellos VM, Claro AM (2019) Bacterial cellulose as a raw material for food and food packaging applications. Front Sustain Food Syst 3:7. https://doi.org/10.3389/fsufs.2019.00007

    Article  Google Scholar 

  21. Jacek P, Dourado F, Gama M, Bielecki S (2019) Molecular aspects of bacterial nanocellulose biosynthesis. Microb Biotechnol 12:633–649. https://doi.org/10.1111/1751-7915.13386

    Article  Google Scholar 

  22. Vazquez A, Foresti ML, Cerrutti P, Galvagno M (2013) Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J Polym Environ 21:545–554. https://doi.org/10.1007/s10924-012-0541-3

    Article  Google Scholar 

  23. Molina-Ramírez C, Castro C, Zuluaga R, Gañán P (2018) Physical characterization of bacterial cellulose produced by Komagataeibacter medellinensis using food supply chain waste and agricultural by-products as alternative low-cost feedstocks. J Polym Environ 26:830–837. https://doi.org/10.1007/s10924-017-0993-6

    Article  Google Scholar 

  24. Pacheco G, Nogueira CR, Meneguin AB, Trovatti E, Silva MC, Machado RT, Ribeiro SJ, Da Silva Filho EC, Barud HDS (2017) Development and characterization of bacterial cellulose produced by cashew tree residues as alternative carbon source. Ind Crops Prod 107:13–19. https://doi.org/10.1016/j.indcrop.2017.05.026

    Article  Google Scholar 

  25. Revin V, Liyaskina E, Nazarkina M, Bogatyreva A, Shchankin M (2018) Cost-effective production of bacterial cellulose using acidic food industry by-products. Braz J Microbiol 49:151–159. https://doi.org/10.1016/j.bjm.2017.12.012

    Article  Google Scholar 

  26. Kuo CH, Huang CY, Shieh CJ, Wang HMD, Tseng CY (2019) Hydrolysis of orange peel with cellulase and pectinase to produce bacterial cellulose using Gluconacetobacter xylinus. Waste Biomass Valor 10:85–93. https://doi.org/10.1007/S12649-017-0034-7

    Article  Google Scholar 

  27. Esa F, Tasirin SM, Abd Rahman N (2014) Overview of bacterial cellulose production and application. Agric Agric Sci Procedia 2:113–119. https://doi.org/10.1016/j.aaspro.2014.11.017

    Article  Google Scholar 

  28. Cebin AV, Ralet MC, Vigouroux J, Karača S, Martinić A, Komes D, Bonnin E (2021) Valorisation of walnut shell and pea pod as novel sources for the production of xylooligosaccharides. Carbohydr Polym 263:117932. https://doi.org/10.1016/j.carbpol.2021.117932

    Article  Google Scholar 

  29. FAO (2021) Food and agriculture organization of the United Nations. http://www.fao.org/faostat/en/#data/QC. Accessed 26 May 2021

  30. Nimbalkar PR, Khedkar MA, Chavan PV, Bankar SB (2018) Biobutanol production using pea pod waste as substrate: impact of drying on saccharification and fermentation. Renew Energy 117:520–529. https://doi.org/10.1016/j.renene.2017.10.079

    Article  Google Scholar 

  31. Sowbhagya HB (2014) Chemistry, technology, and nutraceutical functions of celery (Apium graveolens L.): an overview. Crit Rev Food Sci Nutr 54:389–398. https://doi.org/10.1080/10408398.2011.586740

    Article  Google Scholar 

  32. Yanmaz R, Balkaya A, Akan S, Kaymak HÇ, Sarıkamış G, Önal Ulukapı K, Açıkgöz FE (2020) Sebzecilik sektörü: Dünü, bugünü ve geleceği [Vegetable industry: Past, present and future]. Türkiye Ziraat Mühendisliği IX. Teknik Kongresi Bildiri Kitabı [Turkey Agricultural Engineering IXth Technical Congress Proceedings Book] 595–607 [In Turkish]

  33. Golubkina NA, Kharchenko VA, Moldovan AI, Koshevarov AA, Zamana S, Nadezhkin S, Soldatenko A, Sekara A, Tallarita A, Caruso G (2020) Yield, growth, quality, biochemical characteristics and elemental composition of plant parts of celery leafy, stalk and root types grown in the northern hemisphere. Plants 9:484. https://doi.org/10.3390/plants9040484

    Article  Google Scholar 

  34. Zheng W, Phoungthong K, Lü F, Shao LM, He PJ (2013) Evaluation of a classification method for biodegradable solid wastes using anaerobic degradation parameters. Waste Manag 33:2632–2640. https://doi.org/10.1016/j.wasman.2013.08.015

    Article  Google Scholar 

  35. Uzyol HK, Saçan MT (2017) Bacterial cellulose production by Komagataeibacter hansenii using algae-based glucose. Environ Sci Pollut Res 24:11154–11162. https://doi.org/10.1007/s11356-016-7049-7

    Article  Google Scholar 

  36. Mondal AK, Sengupta S, Bhowal J, Bhattacharya DK (2012) Utilization of fruit wastes in producing single cell protein. Int J Environ Sci Technol 1:430–438

    Google Scholar 

  37. Taylor KACC (1995) A modification of the phenol/sulfuric acid assay for total carbohydrates giving more comparable absorbances. Appl Biochem Biotechnol 53:207–214. https://doi.org/10.1007/BF02783496

    Article  Google Scholar 

  38. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  39. Hutchens SA, Leon RV, O’Neill HM, Evans BR (2007) Statistical analysis of optimal culture conditions for Gluconacetobacter hansenii cellulose production. Lett Appl Microbiol 44:175–180. https://doi.org/10.1111/j.1472-765X.2006.02055.x

    Article  Google Scholar 

  40. Tomé LC, Pinto RJ, Trovatti E, Freire CS, Silvestre AJ, Neto CP, Gandini A (2011) Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly (lactic acid) through a simple approach. Green Chem 13:419–427. https://doi.org/10.1039/C0GC00545B

    Article  Google Scholar 

  41. Tabaii MJ, Emtiazi G (2016) Comparison of bacterial cellulose production among different strains and fermented media. Appl Food Biotechnol 3:35–41. https://doi.org/10.22037/afb.v3i1.10582

    Article  Google Scholar 

  42. Sureshkumar M, Siswanto DY, Lee CK (2010) Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles. J Mater Chem 20:6948–6955. https://doi.org/10.1039/C0JM00565G

    Article  Google Scholar 

  43. Pourramezan GZ, Roayaei AM, Qezelbash QR (2009) Optimization of culture conditions for bacterial cellulose production by Acetobacter sp. 4B–2. Biotechnology 8:150–154. https://doi.org/10.3923/biotech.2009.150.154

    Article  Google Scholar 

  44. Hafid HS, Shah UKM, Baharuddin AS, Ariff AB (2017) Feasibility of using kitchen waste as future substrate for bioethanol production: a review. Renew Sust Energ Rev 74:671–686. https://doi.org/10.1016/j.rser.2017.02.071

    Article  Google Scholar 

  45. Carreira P, Mendes JA, Trovatti E, Serafim LS, Freire CS, Silvestre AJ, Neto CP (2011) Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresour Technol 102:7354–7360. https://doi.org/10.1016/j.biortech.2011.04.081

    Article  Google Scholar 

  46. Gomes FP, Silva NH, Trovatti E, Serafim LS, Duarte MF, Silvestre AJ, Freire CS (2013) Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy 55:205–211. https://doi.org/10.1016/J.BIOMBIOE.2013.02.004

    Article  Google Scholar 

  47. Huang C, Guo HJ, Xiong L, Wang B, Shi SL, Chen XF, Chen XD (2016) Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 136:198–202. https://doi.org/10.1016/j.carbpol.2015.09.043

    Article  Google Scholar 

  48. Voon WWY, Muhialdin BJ, Yusof NL, Rukayadi Y, Hussin AM (2019) Bio-cellulose production by Beijerinckia fluminensis WAUPM53 and Gluconacetobacter xylinus 0416 in sago by-product medium. Appl Biochem Biotechnol 87:211–220. https://doi.org/10.1007/s12010-018-2807-2

    Article  Google Scholar 

  49. Hyun JY, Mahanty B, Kim CG (2014) Utilization of Makgeolli sludge filtrate (MSF) as low-cost substrate for bacterial cellulose production by Gluconacetobacter xylinus. Appl Biochem Biotechnol 172:3748–3760. https://doi.org/10.1007/s12010-014-0810-9

    Article  Google Scholar 

  50. Hong F, Qiu K (2008) An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydr Polym 72:545–549. https://doi.org/10.1016/j.carbpol.2007.09.015

    Article  Google Scholar 

  51. Luo MT, Zhao C, Huang C, Chen XF, Huang QL, Qi GX, Chen XD (2017) Efficient using durian shell hydrolysate as low-cost substrate for bacterial cellulose production by Gluconacetobacter xylinus. Indian J Med Microbiol 57:393–399. https://doi.org/10.1007/s12088-017-0681-1

    Article  Google Scholar 

  52. Kumbhar JV, Rajwade JM, Paknikar KM (2015) Fruit peels support higher yield and superior quality bacterial cellulose production. Appl Microbiol Biotechnol 99:6677–6691. https://doi.org/10.1007/s00253-015-6644-8

    Article  Google Scholar 

  53. Mugesh S, Kumar TP, Murugan M (2016) An unprecedented bacterial cellulosic material for defluoridation of water. RSC Adv 6:104839–104846. https://doi.org/10.1039/C6RA22324A

    Article  Google Scholar 

  54. Anwar B, Bundjali B, Arcana IM (2015) Isolation of cellulose nanocrystals from bacterial cellulose produced from pineapple peel waste juice as culture medium. Procedia Chem 16:279–284. https://doi.org/10.1016/j.proche.2015.12.051

    Article  Google Scholar 

  55. Jadhav NR, Gaikwad VL, Nair KJ, Kadam HM (2014) Glass transition temperature: basics and application in pharmaceutical sector. Asian J Pharm 3:82–89. https://doi.org/10.22377/AJP.V3I2.246

    Article  Google Scholar 

  56. Muthuraj R, Misra M, Mohanty AK (2015) Studies on mechanical, thermal, and morphological characteristics of biocomposites from biodegradable polymer blends and natural fibers. In: Misra M, Pandey JK, Mohanty AK (eds) Biocomposites: Design and Mechanical Performance. Woodhead Publishing, Cambridge, pp 93–140

    Chapter  Google Scholar 

  57. Tang W, Jia S, Jia Y, Yang H (2010) The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microbiol Biotechnol 26:125–131. https://doi.org/10.1007/s11274-009-0151-y

    Article  Google Scholar 

  58. Abeer MM, Mohd Amin MCI, Martin C (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol 66:1047–1061. https://doi.org/10.1111/jphp.12234

    Article  Google Scholar 

  59. Dugan JM, Gough JE, Eichhorn SJ (2013) Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine 8:287–298. https://doi.org/10.2217/nnm.12.211

    Article  Google Scholar 

  60. Hu Y, Catchmark J, Zhu Y, Abidi N, Zhou X, Wang J, Liang N (2014) Engineering of porous bacterial cellulose toward human fibroblasts ingrowth for tissue engineering. J Mater Res 29:2682–2693. https://doi.org/10.1557/jmr.2014.315

    Article  Google Scholar 

  61. Zeng M, Laromaine A, Roig A (2014) Bacterial cellulose films: influence of bacterial strain and drying route on film properties. Cellulose 21:4455–4469. https://doi.org/10.1007/s10570-014-0408-y

    Article  Google Scholar 

  62. Clasen C, Sultanova B, Wilhelms T, Heisig P, Kulicke WM (2006) Effects of different drying processes on the material properties of bacterial cellulose membranes. Macromol Symp 244:48–58. https://doi.org/10.1002/masy.200651204

    Article  Google Scholar 

  63. Khalid A, Khan R, Ul-Islam M, Khan T, Wahid F (2017) Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydr Polym 164:214–221. https://doi.org/10.1016/j.carbpol.2017.01.061

    Article  Google Scholar 

  64. Almeida IF, Pereira T, Silva NHCS, Gomes FP, Silvestre AJD, Freire CSR, Lobo JS, Costa PC (2014) Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study. Eur J Pharm Biopharm 86:332–336. https://doi.org/10.1016/j.ejpb.2013.08.008

    Article  Google Scholar 

  65. Rouabhia M, Asselin J, Tazi N, Messaddeq Y, Levinson D, Zhang Z (2014) Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin. ACS Appl Mater Interfaces 6:1439–1446. https://doi.org/10.1021/am4027983

    Article  Google Scholar 

  66. Horue M, Cacicedo ML, Fernandez MA, Rodenak-Kladniew B, Sánchez RMT, Castro GR (2020) Antimicrobial activities of bacterial cellulose–Silver montmorillonite nanocomposites for wound healing. Mater Sci Eng C 116:111152. https://doi.org/10.1016/j.msec.2020.111152

    Article  Google Scholar 

  67. Wu J, Zheng Y, Song W, Luan J, Wen X, Wu Z, Chen X, Wang Q, Guo S (2014) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym 102:762–771. https://doi.org/10.1016/j.carbpol.2013.10.093

    Article  Google Scholar 

  68. Zhang X, Fang Y, Chen W (2013) Preparation of silver/bacterial cellulose composite membrane and study on its antimicrobial activity. Synth React Inorg Met-Org Nano-Metal Chem 43:907–913. https://doi.org/10.1080/15533174.2012.750674

    Article  Google Scholar 

Download references

Funding

This study was supported by Marmara University, Scientific Research Projects Committee (FEN-C-YLP-120417–0175).

Author information

Authors and Affiliations

Authors

Contributions

Investigation: Gülnihal Bozdağ, Orkun Pinar, Oğuzhan Gündüz; writing- original draft preparation: Gülnihal Bozdağ, Orkun Pinar, Dilek Kazan; visualization: Orkun Pinar; validation: Orkun Pinar; writing- reviewing and editing: Orkun Pinar, Dilek Kazan; resources: Oğuzhan Gündüz; project administration: Dilek Kazan; conceptualization: Dilek Kazan; methodology: Dilek Kazan; supervision: Dilek Kazan.

Corresponding author

Correspondence to Orkun Pinar.

Ethics declarations

Ethics approval

The manuscript does not contain experiments using animals and human studies. No ethical approval is necessary for this manuscript.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozdağ, G., Pinar, O., Gündüz, O. et al. Valorization of pea pod, celery root peel, and mixed-vegetable peel as a feedstock for biocellulose production from Komagataeibacter hansenii DSM 5602. Biomass Conv. Bioref. 13, 7875–7886 (2023). https://doi.org/10.1007/s13399-021-01643-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01643-2

Keywords

Navigation