Skip to main content
Log in

Random triangular Burnside groups

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We introduce a model for random groups in varieties of n-periodic groups as n-periodic quotients of triangular random groups. We show that for an explicit dcrit ∈ (1/3, 1/2), for densities d ∈ (1/3, dcrit) and for n large enough, the model produces infinite n-periodic groups. As an application, we obtain, for every fixed large enough n, for every p ∈ (1, ∞) an infinite n-periodic group with fixed points for all isometric actions on Lp-spaces. Our main contribution is to show that certain random triangular groups are uniformly acylindrically hyperbolic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Antoniuk, T. Łuczak and J. świątkowski, Random triangular groups at density 1/3, Compositio Mathematica 151 (2015), 167–178.

    Article  MathSciNet  Google Scholar 

  2. M. R. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften, Vol. 319, Springer, Berlin, 1999.

    Book  Google Scholar 

  3. W. Burnside, On an unsettled question in the theory of discontinuous groups, The Quarterly Journal of Pure and Applied Mathematics 3 (1902), 230–238.

    MATH  Google Scholar 

  4. M. Cordes, M. Duchin, Y. Duong, M.-C. Ho and A. P. Sanchez, Random nilpotent groups I, International Mathematics Research Notices 2018 (2018), 1921–1953.

    Article  MathSciNet  Google Scholar 

  5. M. Coornaert, T. Delzant and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, Vol. 1441, Springer, Berlin, 1990.

    Book  Google Scholar 

  6. R. Coulon and D. Gruber, Small cancellation theory over Burnside groups, Advances in Mathematics 353 (2019), 722–775.

    Article  MathSciNet  Google Scholar 

  7. R. B. Coulon, Partial periodic quotients of groups acting on a hyperbolic space, Université de Grenoble. Annales de l’Institut Fourier 66 (2016), 1773–1857.

    Article  MathSciNet  Google Scholar 

  8. R. Coulon, Infinite periodic groups of even exponents, https://arxiv.org/abs/1810.08372.

  9. T. Delzant and M. Gromov, Courbure mésoscopique et théorie de la toute petite simplification, Journal of Topology 1 (2008), 804–836.

    Article  MathSciNet  Google Scholar 

  10. C. Druţu and J. M. Mackay, Random groups, random graphs and eigenvalues of p-Laplacians, Advances in Mathematics 341 (2019), 188–254.

    Article  MathSciNet  Google Scholar 

  11. N. M. Dunfield and W. P. Thurston, Finite covers of random 3-manifolds, Inventiones Mathematicae 166 (2006), 457–521.

    Article  MathSciNet  Google Scholar 

  12. M. Gromov, Hyperbolic groups, in Essays in Group Theory, Mathematical Sciences Research Institute Publications, Vol. 8, Springer, New York, 1987, pp. 75–263.

    Book  Google Scholar 

  13. M. Gromov, Asymptotic invariants of infinite groups, in Geometric Group Theory, Vol. 2 (Sussex, 1991), London Mathematical Society Lecture Note Series, vol. 182, Cambridge University Press, Cambridge, 1993, pp. 1–295.

    Google Scholar 

  14. M. Gromov, Spaces and questions, Geometric and Functional Analysis Special Volume (2000), 118–161.

  15. M. Gromov, Random walk in random groups, Geometric and Functional Analysis 13 (2003), 73–146.

    Article  MathSciNet  Google Scholar 

  16. M. Hall, Jr., Solution of the Burnside problem for exponent six, Illinois Journal of Mathematics 2 (1958), 764–786.

    MathSciNet  MATH  Google Scholar 

  17. S. V. Ivanov, The free Burnside groups of sufficiently large exponents, International Journal of Algebra and Computation 4 (1994), 1–308.

    Article  MathSciNet  Google Scholar 

  18. M. Kotowski and M. Kotowski, Random groups and property (T): Żuk’s theorem revisited, Journal of the London Mathematical Society 88 (2013), 396–416.

    Article  MathSciNet  Google Scholar 

  19. I. G. Lysenok, Infinite Burnside groups of even period, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 60 (1996), 3–224.

    Article  MathSciNet  Google Scholar 

  20. J. M. Mackay and P. Przytycki, Balanced walls for random groups, Michigan Mathematical Journal 64 (2015), 397–419.

    Article  MathSciNet  Google Scholar 

  21. J. P. McCammond and D. T. Wise, Fans and ladders in small cancellation theory, Proceedings of the London Mathematical Society 84 (2002), 599–644.

    Article  MathSciNet  Google Scholar 

  22. P. S. Novikov and S. I. Adjan, Infinite periodic groups. I, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 32 (1968), 212–244.

    MathSciNet  Google Scholar 

  23. P. S. Novikov and S. I. Adjan, Infinite periodic groups. II, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 32 (1968), 251–524.

    MathSciNet  Google Scholar 

  24. P. S. Novikov and S. I. Adjan, Infinite periodic groups. III, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 32 (1968), 709–731.

    MathSciNet  Google Scholar 

  25. T. Odrzygóźdź, Nonplanar isoperimetric inequality for random groups, https://arxiv.org/abs/2104.13903.

  26. Y. Ollivier, A January 2005 Invitation to Random Groups, Ensaios Matematicos, Vol. 10, Sociedade Brasileira de Matemótica, Rio de Janeiro, 2005.

    Book  Google Scholar 

  27. Y. Ollivier, Some small cancellation properties of random groups, International Journal of Algebra and Computation 17 (2007), 37–51.

    Article  MathSciNet  Google Scholar 

  28. D. Osajda, Group cubization, Duke Mathematical Journal 167 (2018), 1049–1055.

    Article  MathSciNet  Google Scholar 

  29. I. N. Sanov, Solution of Burnside’s problem for exponent 4, Leningrad State University Annals. Mathematical Series 10 (1940), 166–170.

    MathSciNet  MATH  Google Scholar 

  30. A. Żuk, Property (T) and Kazhdan constants for discrete groups, Geom. Funct. Anal. 13 (2003), no. 3, 643–670.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Mackay.

Additional information

The authors would like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge for support and hospitality during the programme “Non-positive curvature, group actions and cohomology” where work on this paper was undertaken, supported by EPSRC grant EP/K032208/1. The research of the second author was also supported in part by EPSRC grant EP/P010245/1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gruber, D., Mackay, J.M. Random triangular Burnside groups. Isr. J. Math. 244, 75–94 (2021). https://doi.org/10.1007/s11856-021-2170-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-021-2170-9

Navigation