Skip to main content
Log in

Anomalous magnetic behaviour at nano-scale of Mn2+-substituted magnesio-ferrite synthesized by auto-combustion technique

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The nano-crystalline mixed ferrites with the generic formula MnxMg1 − xFe2O4 (x = 0.0–1.0, step: 0.2) were prepared by the citrate-gel auto-combustion technique. Motivated by anomalous magnetic behaviour of coarse-grained MnFe2O4, the main aim was to study the influence of Mn2+ substitution in MgFe2O4 on magnetic structure at nano-regime. The compositional stoichiometry of the final ferrite products was ascertained by EDAX mapping and particle size for each sample was determined by powder X-ray diffraction, TEM, small-angle X-ray and neutron scattering techniques. The lattice constant increases with Mn-content due to larger cation (Mn2+) substitution. The distribution of cations in the tetrahedral (A) and octahedral (B) interstitial sites of the spinel lattice is determined by X-ray diffraction and Mossbauer spectral intensity analysis. The Mossbauer spectra at room temperature exhibit two sextets due to A- and B-sites for compositions x = 0.0, 0.2 and 1.0 while spectra showed central paramagnetic doublet superimposed on magnetic sextets for the samples with x = 0.4, 0.6 and 0.8, ascribed to the presence of superparamagnetic clusters. Thermal variation of AC susceptibility showed hump near the Curie temperature due to the presence of superparamagnetic clusters as corroborated by Mossbauer signature. The observed saturation magnetic moment (at temperature 5 K and applied field 9 T) is found lower compared to Neel's moment for the compositions with x > 0.2 which is explained on the basis of the exchange disorder of Fe3+ ions in the B-sites in Mn-containing ferrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A Hashhash, I Bobrikov, M Yehia, M Kaiser and E Uyanga J. Magn. Magn. Mater. 503 166624 (2020).

    Article  Google Scholar 

  2. S B Dalavi, P P Mishra, T Cherian, M Raja and R N Panda J. Nanosci. Nanotech. 20 983 (2020).

    Article  Google Scholar 

  3. Y H Hou, X T Yan, Y L Huang, S H Zheng, S J Hou and Y F Ouyang J. Magn. Magn. Mater. 495 165862 (2020).

    Article  Google Scholar 

  4. L George, C Viji, M Maheen and E M Mohammed Mater Res. Bull. 126 110833 (2020).

    Article  Google Scholar 

  5. F K Lotgering J. Phys. Chem. Solids 25 95 (1964).

    Article  ADS  Google Scholar 

  6. F K Lotgering and A M Van Diepen J. Phys. Chem. Solids. 34 1369 (1973).

    Article  ADS  Google Scholar 

  7. G M Sawatzky, H M D Coey and A H Morrish J. Appl. Phys. 40 1402 (1969).

    Article  ADS  Google Scholar 

  8. N S S Murthy and S K Paranjpe Ind. J. Pure Appl. Phy. 15 863 (1981).

    Google Scholar 

  9. A Goldman Modern Ferrite Technology 2nd edn. (New York: John Wiley) (1990)

  10. Z Shi et al. J. Magn. Magn. Mater. 498 166222 (2019).

    Article  Google Scholar 

  11. C Srinivas et al. J. Magn. Magn. Mater. 502 166534 (2020).

    Article  Google Scholar 

  12. U B Gawas, V M S Verenkar, S S Meena and P Bhatt J. Supercond. Nov. Magn. 30 3241 (2017).

    Article  Google Scholar 

  13. F G da Silva, J Depeyrot, A F C Campos, R Aquino, D Fiorani and D Peddis J. Nanosci. Nanotech. 19 4888 (2019).

    Article  Google Scholar 

  14. A M Moustafa, I S A Farag, M H Abdellatif and M A Ahmed J. Mater. Sci.: Mater. Elect. 30 20099 (2019).

    Google Scholar 

  15. V A M Brabers J. Phy. Chem. Sol. 32 2181 (1971).

    Article  ADS  Google Scholar 

  16. H Knock and H Dennheim Phys. Status Solidi A 37K 235 (1976).

    Google Scholar 

  17. S Hazra and N N Ghosh J. Nano Sci. Nano Tech. 14 1983 (2014).

    Article  Google Scholar 

  18. N Chaibakhsh and Z Moradi-Shoeili Mater. Sci. Eng. C 99 1424 (2019).

    Article  Google Scholar 

  19. C Y Tsay, Y C Chiu and Y K Tseng Phys. B: Cond. Matt. 570 29 (2019).

    Article  ADS  Google Scholar 

  20. K K Kefeni, T A M Msagati and B B Mamba Mater. Sci. Eng. B 215 37 (2017).

    Article  Google Scholar 

  21. S da Dalt, A S Takimi, V C Sousa and C P Bergmann Parti. Sci. tech.: Int. J. 27 519 (2009).

    Article  Google Scholar 

  22. M M Rashad, M G Fayed, T M Sami and E E El Shereafy J. Mater. Sci. Mater Elect. 26 1259 (2015).

    Article  Google Scholar 

  23. K C Patil, S T Aruna and T Mimani Current. Opin. Sol. State Mater. Sci. 6 507 (2002).

    Article  ADS  Google Scholar 

  24. S Singhal, T Namgyal, S Jauhar, N Lakshmi and S Bansal J. Sol-Gel. Sci. tech. 66 155 (2013).

    Article  Google Scholar 

  25. A Sutka and G Mezinskis Front Mater. Sci. 6 128 (2012).

    Article  Google Scholar 

  26. K H Wu and T H Ting M C Li and W D Ho J. Magn. Magn. Mater. 298 25 (2006).

    Article  ADS  Google Scholar 

  27. C C Hwang, J S Tsai, T H Huang, C H Peng and S Y Chen J. Sol. State Chem. 178 382 (2005).

    Article  ADS  Google Scholar 

  28. Z Yue, W Guo, J Zhou, Z Gui and L Li J. Magn. Magn. Mater. 270 216 (2004).

    Article  ADS  Google Scholar 

  29. P Norouzzadeh, K Mabhouti, M M Golzan and R Naderali Appl. Phys. A 126 154 (2020).

    Article  ADS  Google Scholar 

  30. A Guinier and G Fournet Small-angle scattering of X-rays. (NewYork: John Wiley & Sons, Inc.) (1995)

    MATH  Google Scholar 

  31. O Glatter and O Kratky Small angle x-ray scattering. (New York: Academic Press) (1982)

    Google Scholar 

  32. S Mazumder, D Sen, T Saravanan and P R Vijayaraghavan J. Neutr. Res. 9 39 (2001).

    Article  Google Scholar 

  33. S Mazumder, D Sen, T Saravanan and P R Vijayaraghavan Current Science 81 257 (2001).

    Google Scholar 

  34. K Lagarec and D G Rancourt Nucl. Instrum. Methods 129 266 (1998).

    Article  Google Scholar 

  35. P P Hankare, K R Sanadi, K M Garadkar, D R Patil and I S Mulla J. Alloys Comp. 553 383 (2013).

    Article  Google Scholar 

  36. S M Antao, I Hassan and J B Parise Am. Mineralogist 90 219 (2005).

    Article  ADS  Google Scholar 

  37. B D Culity Elements of X-Ray Diffraction (Addison Wesely publishing company Inc.) p 132 (1959)

  38. S E Harrison, C J Crissman and S R Pollack Phys. Rev. 110 844 (1958).

    Article  ADS  Google Scholar 

  39. J M Hastings and L M Corliss Phys. Rev. 104 328 (1956).

    Article  ADS  Google Scholar 

  40. H Yasuoka J. Phys. Soc. Japan 21 393 (1966).

    Article  ADS  Google Scholar 

  41. N S Satyamurthy, L M Rao, R J Begam, M G Natera and S I Yusuf J. Phys. 32 C1-318 (1971).

    Article  Google Scholar 

  42. S U Rather and O M Lemine J. Alloys Comp. 812 152058 (2020).

    Article  Google Scholar 

  43. M M N Ansari, S Khan and N Ahmad Physica B: Cond. Matter 566 86 (2019).

    Article  ADS  Google Scholar 

  44. J Ren, Z Zhang, X Ma, Y Zhong, J Zhang, Z Ren and Y Liu J. Magn. Magn. Mater. 495 165832 (2019).

    Article  Google Scholar 

  45. S Pedersen J. Appl. Cryst. 27 595 (1994).

    Article  Google Scholar 

  46. K H Jani, M C Chhantbar and H H Joshi J. Magn. Magn. Mater. 320 2208 (2008).

    Article  ADS  Google Scholar 

  47. S Ligemza Phys. Stat. Sol. B. 86 635 (1978).

    Article  ADS  Google Scholar 

  48. S Ligemza Phys. Stat. Sol. B. 105 353 (1981).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. V M S Verenkar, Goa University, Goa for extending the AC susceptibility measurement facility. The authors are also thankful to Dr. P D Babu, UGC-DAE-CSR, BARC, Mumbai for providing M-H loop measurement facility. One of the authors (LJH) is thankful to University Grants Commission, New Delhi for providing a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laxmi J. Hathiya.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hathiya, L.J., Baraliya, J.D., Das, A. et al. Anomalous magnetic behaviour at nano-scale of Mn2+-substituted magnesio-ferrite synthesized by auto-combustion technique. Indian J Phys 96, 2323–2335 (2022). https://doi.org/10.1007/s12648-021-02169-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02169-z

Keywords

Navigation