Skip to main content
Log in

Combustion characteristics of a low calorific gas burner with ceramic foam enclosed by alumina pellets

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The utilization of low calorific gas contributes to the energy conservation and environment protection. In order to improve the utilization efficiency, a porous media burner combining the alumina pellets and ceramic foam was established. The effects of the pellets diameter and pore density of ceramic foam on the combustion characteristics were studied, and the burner starting was also investigated to optimize the porous structure. The results showed that the maximum temperature increased first and then decreased with the increasing of pore density, but it decreased with the increasing of pellets diameter with certain conditions. The smaller pore density of the ceramic foam and the larger diameter of the pellets were conducive to the rapid start-up of the burner. Through the combination of ceramic foam and pellets from the radical direction, the flame can propagate quickly to the inside of the burner. As the inlet velocity increased, the flame location moved to the downstream layer. However, the flame location moved to the upstream layer with a higher equivalence ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Demirbas A (2005) Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energy Combust Sci 31:171–192. https://doi.org/10.1016/j.pecs.2005.02.002

    Article  Google Scholar 

  2. Bubnovich V, Hernandez H, Toledo M, Flores C (2021) Experimental investigation of flame stability in the premixed propane-air combustion in two-section porous media burner. Fuel 291:120117. https://doi.org/10.1016/j.fuel.2020.120117

    Article  Google Scholar 

  3. Chen Z, Guo S, Qin C (2020) Experimental research on porous media combustion of SOFC exhaust gas. Case Studies in Thermal Engineering 22:100796. https://doi.org/10.1016/j.csite.2020.100796

    Article  Google Scholar 

  4. Devi S, Sahoo N, Muthukumar P (2020) Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner. Renewable Energy 149:1040–1052. https://doi.org/10.1016/j.renene.2019.10.092

    Article  Google Scholar 

  5. He J, Chen Z, Jiang X, Leng C (2019) Combustion characteristics of blast furnace gas in porous media burner. Appl Therm Eng 160:113970. https://doi.org/10.1016/j.applthermaleng.2019.113970

    Article  Google Scholar 

  6. Keramiotis C, Katoufa M, Vourliotakis G, Hatziapostolou A, Founti MA (2015) Experimental investigation of a radiant porous burner performance with simulated natural gas, biogas and synthesis gas fuel blends. Fuel 158:835–842. https://doi.org/10.1016/j.fuel.2015.06.041

    Article  Google Scholar 

  7. Qian P, Yuan X, Chen Z, Luo C, Huang Z, Zhu X, Liu M (2021) Experimental study on a high efficient and ultra-lean burn meso-scale thermoelectric system based on porous media combustion. Energy Convers Manage 234:113966. https://doi.org/10.1016/j.enconman.2021.113966

    Article  Google Scholar 

  8. Sobhani S, Legg J, Bartz DF, Kojima JJ, Chang CT, Sullivan JD, Moder JP, Ihme M (2020) Experimental investigation of lean premixed pre-vaporized liquid-fuel combustion in porous media burners at elevated pressures up to 20 bar. Combust Flame 212:123–134. https://doi.org/10.1016/j.combustflame.2019.10.033

    Article  Google Scholar 

  9. Qu Z, Gao H, Feng X, Tao W (2014) Premixed Combustion in a Porous Burner withDifferent Fuels. Combust Sci Technol 187:489–504. https://doi.org/10.1080/00102202.2014.958220

    Article  Google Scholar 

  10. Al-attab KA, Ho JC, Zainal ZA (2015) Experimental investigation of submerged flame in packed bed porous media burner fueled by low heating value producer gas. Exp Thermal Fluid Sci 62:1–8. https://doi.org/10.1016/j.expthermflusci.2014.11.007

    Article  Google Scholar 

  11. Bakry AI, Rabea K (2019) Effect of offset distance on the performance of two-region porous inert medium burners at low thermal power operation. Appl Therm Eng 148:1346–1358. https://doi.org/10.1016/j.applthermaleng.2018.12.027

    Article  Google Scholar 

  12. Hsu P, Evans WD, Howell JR (1993) Experimental and numerical study of premixed combustion within nonhomogeneous porous ceramics. Combust Sci Technol 90: 149–172

  13. Liu H, Dong S, Li B-W, Chen H-G (2010) Parametric investigations of premixed methane–air combustion in two-section porous media by numerical simulation. Fuel 89:1736–1742. https://doi.org/10.1016/j.fuel.2009.06.001

    Article  Google Scholar 

  14. Akbari MH, Riahi P, Roohi R (2009) Lean flammability limits for stable performance with a porous burner. Appl Energy 86:2635–2643. https://doi.org/10.1016/j.apenergy.2009.04.019

    Article  Google Scholar 

  15. Bubnovich V, Henríquez L, Gnesdilov N (2007) Numerical Study of the Effect of the Diameter of Alumina Balls on Flame Stabilization in a Porous-Medium Burner. Numerical Heat Transfer 52:275–295. https://doi.org/10.1080/00397910601149942

    Article  Google Scholar 

  16. Bubnovich V, Toledo M, Henríquez L, Rosas C, Romero J (2010) Flame stabilization between two beds of alumina balls in a porous burner. Appl Therm Eng 30:92–95. https://doi.org/10.1016/j.applthermaleng.2009.04.001

    Article  Google Scholar 

  17. Gao H-B, Qu Z-G, He Y-l, Tao W-Q (2012) Experimental study of combustion in a double-layer burner packed with alumina pellets of different diameters. Appl Energy 100:295–302. https://doi.org/10.1016/j.apenergy.2012.05.019

    Article  Google Scholar 

  18. Gao H, Qu Z, Tao W, He Y, Zhou J (2011) Experimental Study of Biogas Combustion in a Two-Layer Packed Bed Burner. Energy Fuels 25:2887–2895. https://doi.org/10.1021/ef200500j

    Article  Google Scholar 

  19. Gao H-B, Qu Z-G, Tao W-Q, He Y-L (2013) Experimental investigation of methane/(Ar, N2, CO2)–air mixture combustion in a two-layer packed bed burner. Exp Thermal Fluid Sci 44:599–606. https://doi.org/10.1016/j.expthermflusci.2012.08.023

    Article  Google Scholar 

  20. Shi JR, Li BW, Xia YF, Chen PF, Xu YN, Liu HS (2015) Numerical study of diffusion filtration combustion characteristics in a plane-parallel packed bed. Fuel 158:361–371. https://doi.org/10.1016/j.fuel.2015.05.055

  21. Shi J-R, Li B-W, Li N, Xia Y-F, Xu Y-N, Liu H-S (2017) Experimental and numeric-al investigations on diffusion filtration combustion in a plane-parallel packed bed with different packed bed heights. Appl Therm Eng 127:245–255. https://doi.org/10.1016/j.applthermaleng.2017.07.207

    Article  Google Scholar 

  22. Shi J, Liu Y, Mao M, Lv J, Wang Y, He F (2019) Experimental and numerical studies on the effect of packed bed length on CO and NOx emissions in a plane-parallel porous combustor. Energy 181:250–263. https://doi.org/10.1016/j.energy.2019.05.141

    Article  Google Scholar 

  23. Janvekar AA, Miskam MA, Abas A, Ahmad ZA, Juntakan T, Abdullah MZ (2017) Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner. Energy 122:103–110. https://doi.org/10.1016/j.energy.2017.01.056

    Article  Google Scholar 

  24. Barra AJ, Diepvens G, Ellzey JL, Henneke MR (2003) Numerical study of the effects of material properties on flame stabilization in a porous burner. Combust Flame 134:369–379. https://doi.org/10.1016/S0010-2180(03)00125-1

    Article  Google Scholar 

  25. Habib R, Yadollahi B, Saeed A, Doranehgard MH, Li LKB, Karimi N (2021) Unsteady ultra-lean combustion of methane and biogas in a porous burner – An experimental study. Appl Therm Eng 182:116099. https://doi.org/10.1016/j.applthermaleng.2020.116099

    Article  Google Scholar 

  26. Zheng C-H, Cheng L-M, Li T, Luo Z-Y, Cen K-F (2010) Filtration combustion chara-cteristics of low calorific gas in SiC foams. Fuel 89:2331–2337. https://doi.org/10.1016/j.fuel.2009.12.020

    Article  Google Scholar 

  27. Barra AJ, Ellzey JL (2004) Heat recirculation and heat transfer in porous burners. Combust Flame 137:230–241. https://doi.org/10.1016/j.combustflame.2004.02.007

    Article  Google Scholar 

  28. Bakry AI, Rabea K, El-Fakharany M (2020) Starting up implication of the two-regionporous inert medium (PIM) burners. Energy 201:117602. https://doi.org/10.1016/j.energy.2020.117602

    Article  Google Scholar 

  29. Deb S, Muthukumar P (2021) Development and performance assessment of LPG operated cluster Porous Radiant Burner for commercial cooking and industrial applications. Energy 219:119581. https://doi.org/10.1016/j.energy.2020.119581

    Article  Google Scholar 

  30. Liu H, Wu D, Xie M, Liu H, Xu Z (2019) Experimental and numerical study on the lean premixed filtration combustion of propane/air in porous medium. Appl Therm Eng 150:445–455. https://doi.org/10.1016/j.applthermaleng.2018.12.155

    Article  Google Scholar 

  31. Farzaneh M, Ebrahimi R, Shams M, Shafiey M (2009) Numerical simulation of thermal performance of a porous burner. Chem Eng Process 48:623–632. https://doi.org/10.1016/j.cep.2008.07.006

    Article  Google Scholar 

  32. Farzaneh M, Shafiey M, Ebrahimi R, Shams M (2012) Numerical investigation of premixed combustion in a porous burner with integrated heat exchanger. Heat Mass Transf 48:1273–1283. https://doi.org/10.1007/s00231-012-0966-1

    Article  Google Scholar 

  33. Malico I, Pereira JCF (2001) Numerical Study on the Influence of Radiative Properties in Porous Media Combustion. J Heat Transfer 123:951–957. https://doi.org/10.1115/1.1389059

    Article  Google Scholar 

  34. Malico I, Zhou XY, Pereira JCF (2000) Two-dimensional Numerical Study of Combustion and Pollutants Formation in Porous Burners. Combust Sci Technol 152:57–79. https://doi.org/10.1080/00102200008952127

    Article  Google Scholar 

  35. Huang R, Cheng L, Qiu K, Zheng C, Luo Z (2016) Low-Calorific Gas Combustion in a Two-Layer Porous Burner. Energy Fuels 30:1364–1374. https://doi.org/10.1021/acs.energyfuels.5b02399

    Article  Google Scholar 

  36. Hashemi SM, Hashemi SA (2017) Flame stability analysis of the premixed methane-air combustion in a two-layer porous media burner by numerical simulation. Fuel 202:56–65. https://doi.org/10.1016/j.fuel.2017.04.008

    Article  Google Scholar 

  37. Gao HB, Qu ZG, Feng XB, Tao WQ (2014) Methane/air premixed combustion in a two-layer porous burner with different foam materials. Fuel 115:154–161. https://doi.org/10.1016/j.fuel.2013.06.023

    Article  Google Scholar 

  38. Gao H, Qu Z, Feng X, Tao W (2014) Combustion of methane/air mixtures in a two-layer porous burner: A comparison of alumina foams, beads, and honeycombs. Exp Thermal Fluid Sci 52:215–220. https://doi.org/10.1016/j.expthermflusci.2013.09.013

    Article  Google Scholar 

  39. Dai H, Lin B, Ji K, Wang C, Li Q, Zheng Y, Wang K (2015) Combustion characteri-stics of low-concentration coal mine methane in ceramic foam burner with embedded alumina pellets. Appl Therm Eng 90:489–498. https://doi.org/10.1016/j.applthermaleng.2015.07.029

    Article  Google Scholar 

  40. Song F, Wen Z, Dong Z, Wang E, Liu X (2017) Ultra-low calorific gas combustion in a gradually-varied porous burner with annular heat recirculation. Energy 119:497–503. https://doi.org/10.1016/j.energy.2016.12.077

    Article  Google Scholar 

  41. Song F, Wen Z, Dong Z, Wang E, Liu X (2019) Numerical study and optimization of a porous burner with annular heat recirculation. Appl Therm Eng 157:113741. https://doi.org/10.1016/j.applthermaleng.2019.113741

    Article  Google Scholar 

  42. Loukou A, Frenzel I, Klein J, Trimis D (2012) Experimental study of hydrogen production and soot particulate matter emissions from methane rich-combustion in inert porous media. Int J Hydrogen Energy 37:16686–16696. https://doi.org/10.1016/j.ijhydene.2012.02.041

    Article  Google Scholar 

  43. Arrieta CE, García AM, Amell AA (2017) Experimental study of the combustion of natural gas and high-hydrogen content syngases in a radiant porous media burner. Int J Hydrogen Energy 42:12669–12680. https://doi.org/10.1016/j.ijhydene.2017.03.078

    Article  Google Scholar 

  44. Liu JF, Hsieh WH (2004) Experimental investigation of combustion in porous heating burners. Combust Flame 138:295–303. https://doi.org/10.1016/j.combustflame.2004.06.003

    Article  Google Scholar 

  45. Dai H, Lin B, Ji K, Hong Y (2015) Two-Dimensional Experimental Study of Superadiabatic Combustion in a Packed Bed Burner. Energy Fuels 29:5311–5321. https://doi.org/10.1021/acs.energyfuels.5b01046

    Article  Google Scholar 

  46. Hendricks TJ, Howell JR (1996) Absorption/Scattering Coefficients and Scattering Phase Functions in Reticulated Porous Ceramics. J Heat Transfer 118:79–87. https://doi.org/10.1115/1.2824071

    Article  Google Scholar 

  47. Dai H, Lin B (2014) Scale Effect of Ceramic Foam Burner on the Combustion Characteristics of Low-Concentration Coal Mine Methane. Energy Fuels 28:6644–6654. https://doi.org/10.1021/ef501349z

    Article  Google Scholar 

  48. Shi J-R, Xie M-Z, Liu H, Li G, Zhou L (2008) Numerical simulation and theoretical analysis of premixed low-velocity filtration combustion. Int J Heat Mass Transf 51:1818–1829. https://doi.org/10.1016/j.ijheatmasstransfer.2007.06.028

    Article  MATH  Google Scholar 

  49. Viskanta XFR, Gore JP (1998) Measurement and correlation of volumetric heat transfer coefficients of cellular ceramics. Exp Thermal Fluid Sci 17:285–293. https://doi.org/10.1016/S0894-1777(98)10002-X

    Article  Google Scholar 

  50. Bubnovich V, Toledo M (2007) Analytical modelling of filtration combustion in inert porous media. Appl Therm Eng 27:1144–1149. https://doi.org/10.1016/j.applthermaleng.2006.02.037

    Article  Google Scholar 

  51. Wu Z, Caliot C, Flamant G, Wang Z (2011) Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances. Int J Heat Mass Transf 54:1527–1537. https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.037

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support to this work by the National Key Research and Development Program of China (No. 2018YFC0808500), the National Natural Science Foundation of China (No. 51804237), the Natural Science Foundation of Hubei Province of China (No. 2018CFB207), and the Fundamental Research Funds for the Central Universities (WUT: 2019IVB035). Comments by all anonymous reviewers were highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaming Dai.

Ethics declarations

Conflict of interest statement

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H., Dai, H., Zhu, H. et al. Combustion characteristics of a low calorific gas burner with ceramic foam enclosed by alumina pellets. Heat Mass Transfer 58, 221–231 (2022). https://doi.org/10.1007/s00231-021-03107-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03107-9

Keywords

Navigation