Skip to main content
Log in

Pulling objects out of cohesive granular materials

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Initiating the motion of an object embedded in granular materials requires applying a force that exceeds a non-null threshold. This study focuses on how inter-granular adhesion affects this threshold. A series of 2D DEM numerical tests involving vertically pulling out plate-shape objects evidences a general linear scaling between the force threshold and the contact adhesion strength. We found that the slope of this relation is proportional to either the plate width or the plate depth, which ever is the largest. This reflects two regimes of mobility controlled by two distinct failure modes: (i) unsticking the plate from the grains underneath it or (ii) spliting a frustum of grains above the plate, which ever is the strongest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schwarz, M., Cohen, D., Or, D.: Root-soil mechanical interactions during pullout and failure of root bundles. Journal of Geophysical Research: Earth Surface 115(4), (2010)

  2. Dyson, A., Rognon, P.: Pull-out capacity of tree root inspired anchors in shallow granular soils. Géotech. Lett. 4(4), 301 (2014)

    Article  Google Scholar 

  3. Burrall, M., DeJong, J., Martinez, A., Wilson, D.: Vertical pullout tests of orchard trees for bio-inspired engineering of anchorage and foundation systems. Bioinspiration & Biomimetics (2020)

  4. Das, B.M., Shukla, S.K.: Earth anchors. J. Ross Publishing, Florida (2013)

    Google Scholar 

  5. Wu, X., Hu, Y., Li, Y., Yang, J., Duan, L., Wang, T., Adcock, T., Jiang, Z., Gao, Z., Lin, Z.: et al., Foundations of offshore wind turbines: A review, Renewable and Sustainable Energy Reviews 104, 379 (2019)

  6. Radl, S., Brandl, D., Heimburg, H., Glasser, B.J., Khinast, J.G.: Flow and mixing of granular material over a single blade. Powder Technolo. 226, 199 (2012)

    Article  Google Scholar 

  7. Boonkanokwong, V., Frank, R.P., Valliappan, P., Remy, B., Khinast, J.G., Glasser, B.J.: Flow of granular materials in a bladed mixer: effect of particle properties and process parameters on impeller torque and power consumption. Adv. Powder Technol. 29(11), 2733 (2018)

    Article  Google Scholar 

  8. Lehuen, J., Delenne, J.Y., Duri, A., Ruiz, T.: Forces and flow induced by a moving intruder in a granular packing: coarse-graining and dem simulations versus experiments. Granul. Matter 22(4), 78 (2020). https://doi.org/10.1007/s10035-020-01047-5

    Article  Google Scholar 

  9. Meyerhof, G., Adams, J.: The ultimate uplift capacity of foundations. Can. Geotech. J. 5(4), 225 (1968)

    Article  Google Scholar 

  10. Rowe, R.K., Davis, E.H.: Behaviour of anchor plates in sand. Geotechnique 32(1), 25 (1982)

    Article  Google Scholar 

  11. Murray, E.J., Geddes, J.D.: Uplift of anchor plates in sand. J. Geotech. Eng. 113(3), 202 (1987)

    Article  Google Scholar 

  12. Merifield, R., Sloan, S.: The ultimate pullout capacity of anchors in frictional soils. Can. Geotech. J. 43(8), 852 (2006)

    Article  Google Scholar 

  13. Kumar, J., Kouzer, K.: Vertical uplift capacity of horizontal anchors using upper bound limit analysis and finite elements. Can. Geotech. J. 45(5), 698 (2008)

    Article  Google Scholar 

  14. Albert, R., Pfeifer, M., Barabási, A.L., Schiffer, P.: Slow drag in a granular medium. Phy. Rev. Lett. 82(1), 205 (1999)

    Article  ADS  Google Scholar 

  15. Albert, I., Tegzes, P., Kahng, B., Albert, R., Sample, J., Pfeifer, M., Barabasi, A.L., Vicsek, T., Schiffer, P.: Jamming and fluctuations in granular drag. Phy. Rev. Lett. 84(22), 5122 (2000)

    Article  ADS  Google Scholar 

  16. Albert, I., Sample, J., Morss, A., Rajagopalan, S., Barabási, A.L., Schiffer, P.: Granular drag on a discrete object: Shape effects on jamming. Physical Review E 64(6), (2001)

  17. Gravish, N., Umbanhowar, P.B., Goldman, D.I.: Force and flow transition in plowed granular media. Physical review letters 105(12), (2010)

  18. Costantino, D., Bartell, J., Scheidler, K., Schiffer, P.: Low-velocity granular drag in reduced gravity. Physical Review E 83(1), (2011)

  19. Ding, Y., Gravish, N., Goldman, D.I.: Drag induced lift in granular media. Physical Review Letters 106(2), (2011)

  20. Métayer, J.F., Suntrup, D.J., III., Radin, C., Swinney, H.L., Schröter, M.: Shearing of frictional sphere packings. EPL (Europhysics Letters) 93(6), 64003 (2011)

    Article  ADS  Google Scholar 

  21. Khatri, V.N., Kumar, J.: Effect of anchor width on pullout capacity of strip anchors in sand. Can. Geotech. J. 48(3), 511 (2011)

    Article  Google Scholar 

  22. Bhattacharya, P., Kumar, J.: Pullout capacity of inclined plate anchors embedded in sand. Can. Geotech. J. 51(11), 1365 (2014)

    Article  Google Scholar 

  23. Askari, H., Kamrin, K.: Intrusion rheology in grains and other flowable materials. Nat. Mater. 15(12), 1274 (2016)

    Article  ADS  Google Scholar 

  24. Giampa, J., Bradshaw, A., Gerkus, H., Gilbert, R., Gavin, K., Sivakumar, V.: The effect of shape on the pull-out capacity of shallow plate anchors in sand, Géotechnique pp. 1–9 (2018)

  25. Sakai, T., Tanaka, T.: Scale effect of a shallow circular anchor in dense sand. Soils Found. 38(2), 93 (1998)

    Article  Google Scholar 

  26. Athani, S., Kharel, P., Airey, D., Rognon, P.: Grain-size effect on uplift capacity of plate anchors in coarse granular soils, Géotechnique Letters pp. 1–7 (2017)

  27. Costantino, D.J., Scheidemantel, T.J., Stone, M.B., Conger, C., Klein, K., Lohr, M., Modig, Z., Schiffer, P.: Starting to Move through a Granular Medium. Physical Review Letters 101(10), (2008)

  28. Evans, T.M., Zhang, N.: Three-dimensional simulations of plate anchor pullout in granular materials. Int. J. Geomech. 19(4), 04019004 (2019)

    Article  Google Scholar 

  29. Hossain, T., Rognon, P.: Drag force in immersed granular materials. Physical Review Fluids 5(5), (2020)

  30. Hossain, T., Rognon, P.: Mobility in immersed granular materials upon cyclic loading. Phys. Rev. E 102, (2020). https://doi.org/10.1103/PhysRevE.102.022904

  31. Allen, B., Kudrolli, A.: Effective drag of a rod in fluid-saturated granular beds. Physical Review E 100(2), (2019)

  32. Athani, S., Rognon, P.: Mobility in granular materials upon cyclic loading. Granul. Matt. 20(4), 1 (2018)

    Article  Google Scholar 

  33. Athani, S., Rognon, P.: Inertial drag in granular media. Physical Review Fluids 4(12), (2019)

  34. Mitarai, N., Nori, F.: Wet granular materials. Adv. Phy. 55(1–2), 1 (2006)

    Article  ADS  Google Scholar 

  35. Richefeu, V., Radjaı, F., El Youssoufi, M.S.: Stress transmission in wet granular materials. Eur. Phy. J. E 21(4), 359 (2006)

    Article  Google Scholar 

  36. Johnson, K.L., Kendall, K., Roberts, a.: Surface energy and the contact of elastic solids, Proceedings of the royal society of London. A. mathematical and physical sciences 324(1558), 301 (1971)

  37. Derjaguin, B.V., Muller, V.M., Toporov, Y.P.: Effect of contact deformations on the adhesion of particles. J. Colloid Interfac. Sci. 53(2), 314 (1975)

    Article  ADS  Google Scholar 

  38. Luding, S.: Cohesive, frictional powders: contact models for tension. Granul. Matt. 10(4), 235 (2008)

    Article  MathSciNet  Google Scholar 

  39. Rognon, P., Roux, J.N., Wolf, D., Naaïm, M., Chevoir, F.: Rheophysics of cohesive granular materials. EPL (Europhysics Letters) 74(4), 644 (2006)

    Article  ADS  Google Scholar 

  40. Rognon, P.G., Roux, J.N., Naaim, M., Chevoir, F.: Dense flows of cohesive granular materials. J. Fluid Mech. 596, 21 (2008)

    Article  ADS  Google Scholar 

  41. Aarons, L., Sundaresan, S.: Shear flow of assemblies of cohesive and non-cohesive granular materials. Powder Technol. 169(1), 10 (2006)

    Article  Google Scholar 

  42. Gu, Y., Chialvo, S., Sundaresan, S.: Rheology of cohesive granular materials across multiple dense-flow regimes. Physical Review E 90(3), (2014)

  43. Brewster, R., Grest, G.S., Landry, J.W., Levine, A.J.: Plug flow and the breakdown of bagnold scaling in cohesive granular flows. Physical Review E 72(6), (2005)

  44. Métayer, J.F., Richard, P., Faisant, A., Delannay, R.: Electrically induced tunable cohesion in granular systems. J.Stat. Mech. Theor. Exp. 2010(08), P08003 (2010)

    Article  Google Scholar 

  45. Berger, N., Azéma, E., Douce, J.F., Radjai, F.: Scaling behaviour of cohesive granular flows. EPL (Europhysics Letters) 112(6), 64004 (2016)

    Article  ADS  Google Scholar 

  46. Roy, S., Luding, S., Weinhart, T.: A general (ized) local rheology for wet granular materials. New journal of physics 19(4), (2017)

  47. Vo, T.T., Nezamabadi, S., Mutabaruka, P., Delenne, J.Y., Radjai, F.: Additive rheology of complex granular flows. Nat. Commun. 11(1), 1 (2020)

    Article  Google Scholar 

  48. Mandal, S., Nicolas, M., Pouliquen, O.: Insights into the rheology of cohesive granular media. Proceedings of the National Academy of Sciences (2020)

  49. Macaulay, M., Rognon, P.: Viscosity of cohesive granular flows. Soft matter 17(1), 165 (2021)

    Article  ADS  Google Scholar 

  50. Artoni, R., Loro, G., Richard, P., Gabrieli, F., Santomaso, A.C.: Drag in wet granular materials. Powder Technol. 356, 231 (2019)

    Article  Google Scholar 

  51. Merifield, R., Sloan, S., Yu, H.: Stability of plate anchors in undrained clay. Geotechnique 51(2), 141 (2001)

    Article  Google Scholar 

  52. Zhang, N., Wu, H.N., Shen, J.S.L., Hino, T., Yin, Z.Y.: Evaluation of the uplift behavior of plate anchor in structured marine clay. Marine Georesources & Geotech. 35(6), 758 (2017)

    Article  Google Scholar 

  53. Merifield, R., Lyamin, A., Sloan, S., Yu, H.: Three-dimensional lower bound solutions for stability of plate anchors in clay. J. Geotech. Geoenviron. Eng. 129(3), 243 (2003)

    Article  Google Scholar 

  54. Song, Z., Hu, Y., Randolph, M.F.: Numerical simulation of vertical pullout of plate anchors in clay. J. Geotech. Geoenviron. Eng. 134(6), 866 (2008)

    Article  Google Scholar 

  55. Barber, J.R.: Contact Mech., vol. 250. Springer, Berlin (2018)

    Book  Google Scholar 

  56. Ciavarella, M., Joe, J., Papangelo, A., Barber, J.: The role of adhesion in contact mechanics. J. Royal Soc. Interfac. 16(151), 20180738 (2019)

    Article  Google Scholar 

  57. Macaulay, M., Rognon, P.: Two mechanisms of momentum transfer in granular flows. Physical Review E 101(5), (2020)

  58. Percier, B., Manneville, S., McElwaine, J.N., Morris, S.W., Taberlet, N.: Lift and drag forces on an inclined plow moving over a granular surface. Physical Review E 84(5), (2011)

  59. Potiguar, F.Q., Ding, Y.: Lift and drag in intruders moving through hydrostatic granular media at high speeds. Physical Review E 88(1), (2013)

  60. Takehara, Y., Fujimoto, S., Okumura, K.: High-velocity drag friction in dense granular media. EPL (Europhysics Letters) 92(4), 44003 (2010)

    Article  ADS  Google Scholar 

  61. Takehara, Y., Okumura, K.: High-velocity drag friction in granular media near the jamming point. Physical review letters 112(14), (2014)

  62. Takada, S., Hayakawa, H.: Drag acting on an intruder in a three-dimensional granular environment. Granular Matter 22(1), 6 (2020)

Download references

Acknowledgements

This research was funded by the Australian Government through the Australian Research Council (DP200101927).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Rognon.

Ethics declarations

Human or animals participants

This research did not involve Human participants or Animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athani, S., Rognon, P. Pulling objects out of cohesive granular materials. Granular Matter 23, 67 (2021). https://doi.org/10.1007/s10035-021-01126-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01126-1

Keywords

Navigation