Skip to main content
Log in

Building Diquark Model from Lattice QCD

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

A novel Lattice QCD (LQCD) method to determine the quark–diquark (qD) interaction potential together with the diquark mass (\(m_D\)) is proposed. Similar to the HAL QCD method, qD potential is determined by demanding it to reproduce the qD equal-time Nambu–Bethe–Salpeter (NBS) wave function. To do this, it is necessary to use the masses of the quark and the diquark as inputs, which however are not straightforwardly obtained because of the color confinement of QCD. In this work, masses of quark and diquark are determined by demanding that the p-wave spectrums from the two-point correlators be reproduced by the potentials for \(c{\bar{c}}\) and qD sectors determined from the NBS wave functions. Numerical calculations are performed by using 2+1 flavor QCD gauge configurations with the pion mass \(m_\pi \simeq 700\) MeV generated by PACS-CS collaboration. We apply our method to the c\({\bar{c}}\) system and the charm-diquark system (\(\Lambda _c\) baryon) to obtain the charm quark mass, diquark mass and the cD potential. Our preliminary analysis leads to the diquark mass \(m_D \simeq 1.127\) GeV which is roughly consistent with a naive estimate based on the constituent quark picture, i.e., \(m_{D} \simeq m_{\rho } \simeq 1.12\) GeV and \(m_{D} \simeq 2m_N/3 \simeq 1.06\) GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R. Jaffe, Phys. Rep. 409(1), 1 (2005)

    Article  ADS  Google Scholar 

  2. M. Anselmino, E. Predazzi, S. Ekelin, S. Fredriksson, D.B. Lichtenberg, Rev. Mod. Phys. 65, 1199 (1993)

    Article  ADS  Google Scholar 

  3. M. Hess, F. Karsch, E. Laermann, I. Wetzorke, Phys. Rev. D 58, 111502 (1998)

    Article  ADS  Google Scholar 

  4. C. Alexandrou, P. de Forcrand, B. Lucini, Phys. Rev. Lett. 97, 222002 (2006)

    Article  ADS  Google Scholar 

  5. Y. Ikeda, H. Iida, Progress Theoret. Phys. 128(5), 941 (2012)

    Article  ADS  Google Scholar 

  6. E. Eichten et al., Phys. Rev. Lett. 34, 369 (1975)

    Article  ADS  Google Scholar 

  7. T. Kawanai, S. Sasaki, Phys. Rev. Lett. 107, 091601 (2011)

    Article  ADS  Google Scholar 

  8. T. Kawanai, S. Sasaki, Phys. Rev. D 92, 094503 (2015)

    Article  ADS  Google Scholar 

  9. S. Aoki et al., Phys. Rev. D 79, 034503 (2009)

    Article  ADS  Google Scholar 

  10. Y. Iwasaki. unpublished (2011)

  11. S. Aoki, M. Fukugita, S. Hashimoto, K.I. Ishikawa, N. Ishizuka, Y. Iwasaki, K. Kanaya, T. Kaneko, Y. Kuramashi, M. Okawa, S. Takeda, Y. Taniguchi, N. Tsutsui, A. Ukawa, N. Yamada, T. Yoshié, Nonperturbative \(O (a)\) improvement of the Wilson quark action with the renormalization-group-improved gauge action using the Schrödinger functional method. Phys. Rev. D 73, 034501 (2006). https://doi.org/10.1103/PhysRevD.73.034501

  12. S. Aoki et al., Progress Theoret. Phys. 109(3), 383 (2003)

    Article  ADS  Google Scholar 

  13. Y. Namekawa et al., Phys. Rev. D 84, 074505 (2011)

    Article  ADS  Google Scholar 

  14. Y. Koma, M. Koma, Few-Body Syst. 54, 1027–1031 (2013)

    Article  ADS  Google Scholar 

  15. D.T. Colbert, W.H. Miller, J. Chem. Phys. 96(3), 1982 (1992)

    Article  ADS  Google Scholar 

  16. M.G. Beckett, P. Coddington, B. Joó, C.M. Maynard, D. Pleiter, O. Tatebe, T. Yoshie, Comput. Phys. Commun. 182(6), 1208 (2011)

    Article  ADS  Google Scholar 

  17. International Lattice Data Grid (ILDG). http://www.lqcd.org/ildg. Accessed 17 May

  18. Japan Lattice Data Grid (JLDG). http://www.jldg.org. Accessed 17 May

  19. Lattice QCD code Bridge++. http://bridge.kek.jp/Lattice-code/. Accessed 17 May

Download references

Acknowledgements

We thank Y. Ikeda, S. Watanabe, M. Koma and A. Nakamura for fruitful discussions. The Lattice QCD calculation has been carried out by using the supercomputer OCTOPUS at Cyber Media Center of Osaka University under the support of Research Center for Nuclear Physics of Osaka University. We thank PACS-CS Collaboration and ILDG/JLDG for providing us with the 2+1 flavor QCD gauge configurations [9, 16,17,18]. The lattice QCD code is partly based on Bridge++ [19] This research is supported by MEXT as “Program for Promoting Researches on the Supercomputer Fugaku” (Simulation for basic science: from fundamental laws of particles to creation of nuclei) and JICFuS. This work is supported by JSPS KAKENHI Grant Number JP21K03535.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Watanabe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, K., Ishii, N. Building Diquark Model from Lattice QCD. Few-Body Syst 62, 45 (2021). https://doi.org/10.1007/s00601-021-01627-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-021-01627-y

Keywords

Navigation