Skip to main content
Log in

Echocardiography in the Liver Transplant Patient

  • Echocardiography (JM Gardin and AH Waller, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The aim of this study is to review current echocardiographic modalities utilized in the assessment of the preoperative liver transplant candidate with an emphasis on newer techniques. We sought to assess if newer methods imparted additional diagnostic or prognostic accuracy compared to prior methods based on existing studies.

Recent Findings

Standard dobutamine stress echocardiography offers important information regarding operative risk and post-operative survival in liver transplant candidates; however, technologies such as speckle-tracking echocardiography (STE) and evaluation of diastolic function have emerged as useful tools as well.

Summary

2D-STE and diastolic echocardiography offer additional parameters such as global longitudinal strain and measures of diastolic dysfunction that can better predict peri-operative and post-operative complications in liver transplant candidates. If able, practitioners should utilize these methods routinely in their assessment of liver transplant candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Martin P, DiMartini A, Feng S, Brown R Jr, Fallon M. Evaluation for liver transplantation in adults: 2013 practice guideline by the American Association for the Study of Liver Diseases and the American Society of Transplantation. Hepatology. 2014;59(3):1144–65. https://doi.org/10.1002/hep.26972.

    Article  PubMed  Google Scholar 

  2. 2020. optn.transplant.hrsa.gov. Accessed 8/18/2020.

  3. Møller S, Henriksen JH. Cirrhotic cardiomyopathy. J Hepatol. 2010;53(1):179–90. https://doi.org/10.1016/j.jhep.2010.02.023.

    Article  PubMed  Google Scholar 

  4. Zardi EM, Abbate A, Zardi DM, Dobrina A, Margiotta D, Van Tassel BW, et al. Cirrhotic cardiomyopathy. J Am Coll Cardiol. 2010;56(7):539–49. https://doi.org/10.1016/j.jacc.2009.12.075.

    Article  CAS  PubMed  Google Scholar 

  5. Hendrickson H, Chatterjee S, Cao S, Ruiz MM, Sessa WC, Shah V. Influence of caveolin on constitutively activated recombinant eNOS: insights into eNOS dysfunction in BDL rat liver. Am J Physiol Gastrointest Liver Physiol. 2003;285(3):652–60. https://doi.org/10.1152/ajpgi.00143.2003.

    Article  Google Scholar 

  6. Zardi M, Dobrina A, Ambrosino G, Margiotta D, Polistina F, Afeltra A. New Therapeutic approaches to liver fibrosis: a practicable route? Curr Med Chem. 2008;15(16):1628–44. https://doi.org/10.2174/092986708784911560.

    Article  CAS  PubMed  Google Scholar 

  7. Massimo B, David S, Anna P, Marco Di P, Francesca Z, Santina Q, et al. Carbon monoxide-mediated activation of large-conductance calcium-activated potassium channels contributes to mesenteric vasodilatation in cirrhotic rats. J Pharmacol Exp Ther. 2007;321(1):187–94. https://doi.org/10.1124/jpet.106.116665.

    Article  CAS  Google Scholar 

  8. Woitas RP, Heller J, Stoffel-Wagner B, Spengler U, Sauerbruch T. Renal functional reserve and nitric oxide in patients with compensated liver cirrhosis. Hepatology. 1997;26(4):858–64. https://doi.org/10.1002/hep.510260409.

    Article  CAS  PubMed  Google Scholar 

  9. Levy M, Wexler MJ. Renal sodium retention and ascites formation in dogs with experimental cirrhosis but without portal hypertension or increased splanchnic vascular capacity. J Lab Clin Med. 1978;91(3):520–36.

    CAS  PubMed  Google Scholar 

  10. Fernandez-Munoz D, Caramelo C, Santos JC, Blanchart A, Hernando L, Lopez-Novoa JM. Systemic and splanchnic hemodynamic disturbances in conscious rats with experimental liver cirrhosis without ascites. Am J Physiol Gastrointest Liver Physiol. 1985;249(3):G316–G20. https://doi.org/10.1152/ajpgi.1985.249.3.G316.

    Article  CAS  Google Scholar 

  11. Cartin-Ceba R, Krowka MJ. Portopulmonary hypertension. In: Keaveny AP, Cárdenas A, editors. Complications of cirrhosis: evaluation and management. Cham: Springer International Publishing; 2015. p. 177–86.

    Google Scholar 

  12. Goldberg DS, Fallon MB. Hepatopulmonary syndrome. In: Keaveny AP, Cárdenas A, editors. Complications of cirrhosis: evaluation and management. Cham: Springer International Publishing; 2015. p. 169–76.

    Google Scholar 

  13. Ma Z, Meddings JB, Lee SS. Membrane physical properties determine cardiac beta-adrenergic receptor function in cirrhotic rats. Am J Phys. 1994;267(1 Pt 1):G87–93. https://doi.org/10.1152/ajpgi.1994.267.1.G87.

    Article  CAS  Google Scholar 

  14. Battarbee HD, Farrar GE, Spears RP. Responses to hypotension in conscious rats with chronic portal venous hypertension. Am J Phys. 1990;259(1 Pt 1):G48–55. https://doi.org/10.1152/ajpgi.1990.259.1.G48.

    Article  CAS  Google Scholar 

  15. Jaue DN, Ma Z, Lee SS. Cardiac muscarinic receptor function in rats with cirrhotic cardiomyopathy. Hepatology. 1997;25(6):1361–5. https://doi.org/10.1002/hep.510250610.

    Article  CAS  PubMed  Google Scholar 

  16. Bernardi M, Fornalè L, Di Marco C, Trevisani F, Baraldini M, Gasbarrini A, et al. Hyperdynamic circulation of advanced cirrhosis: a re-appraisal based on posture-induced changes in hemodynamics. J Hepatol. 1995;22(3):309–18. https://doi.org/10.1016/0168-8278(95)80284-3.

    Article  CAS  PubMed  Google Scholar 

  17. Ward CA, Ma Z, Lee SS, Giles WR. Potassium currents in atrial and ventricular myocytes from a rat model of cirrhosis. Am J Phys. 1997;273(2 Pt 1):G537–44. https://doi.org/10.1152/ajpgi.1997.273.2.G537.

    Article  CAS  Google Scholar 

  18. Ward CA, Liu H, Lee SS. Altered cellular calcium regulatory systems in a rat model of cirrhotic cardiomyopathy. Gastroenterology. 2001;121(5):1209–18. https://doi.org/10.1053/gast.2001.28653.

    Article  CAS  PubMed  Google Scholar 

  19. Ortiz-Olvera NX, Castellanos-Pallares G, Gómez-Jiménez LM, Cabrera-Muñoz ML, Méndez-Navarro J, Morán-Villota S, et al. Anatomical cardiac alterations in liver cirrhosis: an autopsy study. Ann Hepatol. 2011;10(3):321–6. https://doi.org/10.1016/S1665-2681(19)31544-3.

    Article  PubMed  Google Scholar 

  20. Hall EM, Olsen AY, Davis FE. Portal cirrhosis; clinical and pathologic review of 782 cases from 16,600 necropsies. Am J Pathol. 1953;29(6):993–1027.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Loyke HF. The relationship of cirrhosis of the liver to hypertension: a study of 504 cases of cirrhosis of the liver. Am J Med Sci. 1955;230(6):627–32. https://doi.org/10.1097/00000441-195523060-00004.

    Article  CAS  PubMed  Google Scholar 

  22. Spatt SD, Rosenblatt P. The incidence of hypertension in portal cirrhosis; a study of 80 necropsied cases of portal cirrhosis. Ann Intern Med. 1949;31(3):479. https://doi.org/10.7326/0003-4819-31-3-479.

    Article  CAS  PubMed  Google Scholar 

  23. Finucci G, Desideri A, Sacerdoti D, Bolognesi M, Merkel C, Angeli P, et al. Left ventricular diastolic function in liver cirrhosis. Scand J Gastroenterol. 1996;31(3):279–84. https://doi.org/10.3109/00365529609004879.

    Article  CAS  PubMed  Google Scholar 

  24. Pozzi M, Carugo S, Boari G, Pecci V, de Ceglia S, Maggiolini S, et al. Evidence of functional and structural cardiac abnormalities in cirrhotic patients with and without ascites. Hepatology. 1997;26(5):1131–7. https://doi.org/10.1002/hep.510260507.

    Article  CAS  PubMed  Google Scholar 

  25. Torregrosa M, Aguadé S, Dos L, Segura R, Gónzalez A, Evangelista A, et al. Cardiac alterations in cirrhosis: reversibility after liver transplantation. J Hepatol. 2005;42(1):68–74. https://doi.org/10.1016/j.jhep.2004.09.008.

    Article  PubMed  Google Scholar 

  26. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29(4):277–314. https://doi.org/10.1016/j.echo.2016.01.011.

    Article  Google Scholar 

  27. Caramelo C, Fernandez-Muñoz D, Santos JC, Blanchart A, Rodriguez-Puyol D, López-Novoa JM, et al. Effect of volume expansion on hemodynamics, capillary permeability and renal function in conscious, cirrhotic rats. Hepatology. 1986;6(1):129–34. https://doi.org/10.1002/hep.1840060125.

    Article  CAS  PubMed  Google Scholar 

  28. Wong F, Liu P, Lilly L, Bomzon A, Blendis L. Role of cardiac structural and functional abnormalities in the pathogenesis of hyperdynamic circulation and renal sodium retention in cirrhosis. Clin Sci (Lond). 1999;97(3):259–67.

    Article  CAS  Google Scholar 

  29. Mathias W, Picano E. Dobutamine stress echocardiography. In: Stress Echocardiography. Cham: Springer International Publishing; 2015. p. 197–214.

    Chapter  Google Scholar 

  30. Plotkin JS, Benitez RM, Kuo PC, Njoku MJ, Ridge LA, Lim JW, et al. Dobutamine stress echocardiography for preoperative cardiac risk stratification in patients undergoing orthotopic liver transplantation. Liver Transpl Surg. 1998;4(4):253–7. https://doi.org/10.1002/lt.500040415.

    Article  CAS  PubMed  Google Scholar 

  31. Agrawal A, Dias A, Jain D, Figueredo V. Dobutamine stress echocardiography as a predictor of cardiovascular morbidity and mortality post orthotopic liver transplantation. J Am Coll Cardiol. 2017;69(11, Supplement):1497. https://doi.org/10.1016/S0735-1097(17)34886-6.

    Article  Google Scholar 

  32. Harinstein ME, Flaherty JD, Ansari AH, Robin J, Davidson CJ, Rossi JS, et al. Predictive value of dobutamine stress echocardiography for coronary artery disease detection in liver transplant candidates. Am J Transplant. 2008;8(7):1523–8. https://doi.org/10.1111/j.1600-6143.2008.02276.x.

    Article  CAS  PubMed  Google Scholar 

  33. Umphrey LG, Hurst RT, Eleid MF, Lee KS, Reuss CS, Hentz JG, et al. Preoperative dobutamine stress echocardiographic findings and subsequent short-term adverse cardiac events after orthotopic liver transplantation. Liver Transpl. 2008;14(6):886–92. https://doi.org/10.1002/lt.21495.

    Article  PubMed  Google Scholar 

  34. Patel KK, Young L, Carey W, Kohn KA, Grimm RA, Rodriguez LL, et al. Preoperative dobutamine stress echocardiography in patients undergoing orthotopic liver transplantation. Clin Cardiol. 2018;41(7):931–5. https://doi.org/10.1002/clc.22980.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Marwick TH, Picano E. New ultrasound technologies for quantitative assessment of left ventricular function. In: Stress Echocardiography. Cham: Springer International Publishing; 2015. p. 377–99.

    Chapter  Google Scholar 

  36. Zamirian M, Afsharizadeh F, Moaref A, Abtahi F, Amirmoezi F, Attar A. Reduced myocardial reserve in cirrhotic patients: an evaluation by dobutamine stress speckle tracking and tissue Doppler imaging (TDI) echocardiography. J Cardiovasc Thorac Res. 2019;11(2):127–31. https://doi.org/10.15171/jcvtr.2019.22.

    Article  PubMed  PubMed Central  Google Scholar 

  37. •• Izzy M, VanWagner LB, Lin G, Altieri M, Findlay JY, Oh JK, et al. Redefining cirrhotic cardiomyopathy for the modern era. Hepatology. 2020;71(1):334–45. https://doi.org/10.1002/hep.30875This article details newly improved and updated diagnostic criteria for CCM, with an emphasis on modern echocardiographic techniques including GLS and measures of diastolic dysfunction.

    Article  PubMed  Google Scholar 

  38. • Jansen C, Cox A, Schueler R, Schneider M, Lehmann J, Praktiknjo M, et al. Increased myocardial contractility identifies patients with decompensated cirrhosis requiring liver transplantation. Liver Transpl. 2018;24(1):15–25. https://doi.org/10.1002/lt.24846This study identified the common echocardiographic finding of hyperdynamic LV contractility as being associated with reduced transplant-free survival.

    Article  PubMed  Google Scholar 

  39. • Mechelinck M, Hartmann B, Hamada S, Becker M, Andert A, Ulmer TF, et al. Global longitudinal strain at rest as an independent predictor of mortality in liver transplant candidates: a retrospective clinical study. J Clin Med. 2020;9(8):2616 This study demonstrated that both abnormally high or low GLS is a highly predictive marker of post-LT mortality in cirrhotics.

    Article  Google Scholar 

  40. Galderisi M, Picano E. Diastolic stress echocardiography. In: Stress Echocardiography. Cham: Springer International Publishing; 2015. p. 421–9.

    Chapter  Google Scholar 

  41. Mittal C, Qureshi W, Singla S, Ahmad U, Huang MA. Pre-transplant left ventricular diastolic dysfunction is associated with post transplant acute graft rejection and graft failure. Dig Dis Sci. 2014;59(3):674–80. https://doi.org/10.1007/s10620-013-2955-8.

    Article  PubMed  Google Scholar 

  42. Bushyhead D, Kirkpatrick JN, Goldberg D. Pretransplant echocardiographic parameters as markers of posttransplant outcomes in liver transplant recipients. Liver Transpl. 2016;22(3):316–23. https://doi.org/10.1002/lt.24375.

    Article  PubMed  Google Scholar 

  43. Kia L, Shah SJ, Wang E, Sharma D, Selvaraj S, Medina C, et al. Role of pretransplant echocardiographic evaluation in predicting outcomes following liver transplantation. Am J Transplant. 2013;13(9):2395–401. https://doi.org/10.1111/ajt.12385.

    Article  CAS  PubMed  Google Scholar 

  44. Dowsley TF, Bayne DB, Langnas AN, Dumitru I, Windle JR, Porter TR, et al. Diastolic dysfunction in patients with end-stage liver disease is associated with development of heart failure early after liver transplantation. Transplantation. 2012;94(6):646–51. https://doi.org/10.1097/TP.0b013e31825f0f97.

    Article  PubMed  Google Scholar 

  45. Baibhav B, Mahabir CA, Xie F, Shostrom VK, McCashland TM, Porter TR. Predictive value of dobutamine stress perfusion echocardiography in contemporary end-stage liver disease. J Am Heart Assoc. 2017;6(2):e005102. https://doi.org/10.1161/JAHA.116.005102.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Addoumieh A, Abdallah M, Jaber W, Carey W, Klein A, Majdalany D. Clinical implication of inducible left ventricular outflow tract obstruction in patients undergoing liver transplant evaluation. J Am Coll Cardiol. 2018;71(11, Supplement):A1619. https://doi.org/10.1016/S0735-1097(18)32160-0.

    Article  Google Scholar 

  47. Darstein F, König C, Hoppe-Lotichius M, Grimm D, Knapstein J, Mittler J, et al. Preoperative left ventricular hypertrophy is associated with reduced patient survival after liver transplantation. Clin Transpl. 2014;28(2):236–42. https://doi.org/10.1111/ctr.12304.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parul Kakar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Echocardiography

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakar, P., Gubitosa, J. & Gerula, C. Echocardiography in the Liver Transplant Patient. Curr Cardiol Rep 23, 110 (2021). https://doi.org/10.1007/s11886-021-01531-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-021-01531-1

Keywords

Navigation