Skip to main content
Log in

Random Matrix Spectral Form Factor of Dual-Unitary Quantum Circuits

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate a class of local quantum circuits on chains of d-level systems (qudits) that share the so-called ‘dual unitarity’ property. In essence, the latter property implies that these systems generate unitary dynamics not only when propagating in time, but also when propagating in space. We consider space-time homogeneous (Floquet) circuits and perturb them with a quenched single-site disorder, i.e. by applying independent single site random unitaries drawn from arbitrary non-singular distribution over \(\mathrm{SU}(d)\), e.g. one concentrated around the identity, after each layer of the circuit. We identify the spectral form factor at time t in the limit of long chains as the dimension of the commutant of a finite set of operators on a qudit ring of t sites. For general dual unitary circuits of qubits \((d=2)\) and a family of their extensions to higher \(d>2\), we provide an explicit construction of the commutant and prove that spectral form factor exactly matches the prediction of circular unitary ensemble for all t, if only the local 2-qubit gates are different from a SWAP (non-interacting gate).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Sometimes referred to also as Bohigas–Giannoni–Schmit conjecture.

References

  1. Mehta, M.L.: Random Matrices, 3rd edn. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  2. Katz, N.M., Sarnak, P.: Random Matrices, Frobenius Eigenvalues and Monodromy, vol. 45. American Mathematical Society, Providence (1999)

    MATH  Google Scholar 

  3. Forrester, P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010)

    Book  Google Scholar 

  4. Casati, G., Valz-Gris, F., Guarneri, I.: On the connection between quantization of nonintegrable systems and statistical theory of spectra. Lett. Nuovo Cimento Soc. Ital. Fis. 28, 279 (1980)

    Article  MathSciNet  Google Scholar 

  5. Berry, M.V.: Quantizing a classically ergodic system: Sinai’s billiard and the KKR method. Ann. Phys. (N.Y.) 131, 163 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bohigas, O., Giannoni, M.J., Schmit, C.: Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52, 1 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  7. Berry, M.V., Tabor, M.: Level clustering in the regular spectrum. Proc. R. Soc. Lond. Ser. A 356, 375 (1977)

    Article  ADS  Google Scholar 

  8. Marklof, J.: The Berry–Tabor Conjecture. In: Casacuberta, C., Miro-Roig, R.M., Verdera, J., Xambo-Descamps, S. (eds.) European Congress of Mathematics. Progress in Mathematics, vol. 202, p. 421. Birkhäiuser, Basel (2001)

  9. Berry, M.V.: Semiclassical theory of spectral rigidity. Proc. R. Soc. Lond. A 400, 229 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  10. Sieber, M., Richter, K.: Correlations between periodic orbits and their role in spectral statistics. Phys. Scr. T 90, 128 (2001)

    Article  ADS  Google Scholar 

  11. Müller, S., Heusler, S., Braun, P., Haake, F., Altland, A.: Semiclassical foundation of universality in quantum chaos. Phys. Rev. Lett. 93, 014103 (2004)

    Article  ADS  Google Scholar 

  12. Pluhar, Z., Weidenmüller, H.A.: Universal quantum graphs. Phys. Rev. Lett. 112, 144102 (2014)

    Article  ADS  Google Scholar 

  13. Poilblanc, D., Ziman, T., Bellissard, J., Mila, F., Montambaux, G.: Poisson vs. GOE statistics in integrable and non-integrable quantum Hamiltonians. Europhys. Lett. 22, 537 (1993)

    Article  ADS  Google Scholar 

  14. Montambaux, G., Poilblanc, D., Bellissard, J., Sire, C.: Quantum chaos in spin-fermion models. Phys. Rev. Lett. 70, 497 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  15. Hsu, T.C., Anglès d’Auriac, J.C.: Level repulsion in integrable and almost-integrable quantum spin models. Phys. Rev. B 47, 14291 (1993)

    Article  ADS  Google Scholar 

  16. Prosen, T.: Ergodic properties of a generic nonintegrable quantum many-body system in the thermodynamic limit. Phys. Rev. E 60, 3949 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  17. Santos, L.F., Rigol, M.: Onset of quantum chaos in one-dimensional bosonic and fermionic systems and its relation to thermalization. Phys. Rev. E 81, 036206 (2010)

    Article  ADS  Google Scholar 

  18. Bertini, B., Kos, P., Prosen, T.: Exact spectral form factor in a minimal model of many-body quantum chaos. Phys. Rev. Lett. 121, 264101 (2018)

    Article  ADS  Google Scholar 

  19. Nahum, A., Ruhman, J., Vijay, S., Haah, J.: Quantum entanglement growth under random unitary dynamics. Phys. Rev. X 7, 031016 (2017)

    Google Scholar 

  20. Chan, A., De Luca, A., Chalker, J.T.: Solution of a minimal model for many-body quantum chaos. Phys. Rev. X 8, 041019 (2018)

    Google Scholar 

  21. Chan, A., De Luca, A., Chalker, J.T.: Spectral statistics in spatially extended chaotic quantum many-body systems. Phys. Rev. Lett. 121, 060601 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Zelditch, S.: Quantum ergodicity of C* dynamical systems. Commun. Math. Phys. 177, 507 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  23. Alicki, R., Fannes, M.: Quantum Dynamical Systems. Oxford University Press, Oxford (2001)

    Book  Google Scholar 

  24. D’Alessio, L., Kafri, Y., Polkovnikov, A., Rigol, M.: From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239 (2016)

    Article  ADS  Google Scholar 

  25. Kos, P., Ljubotina, M., Prosen, T.: Many-body quantum chaos: analytic connection to random matrix theory. Phys. Rev. X 8, 021062 (2018)

    Google Scholar 

  26. Suzuki, M.: General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys. 32, 400 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  27. Osborne, T.J.: Efficient approximation of the dynamics of one-dimensional quantum spin systems. Phys. Rev. Lett. 97, 157202 (2006)

    Article  ADS  Google Scholar 

  28. Arute, F., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505 (2019)

    Article  ADS  Google Scholar 

  29. Haake, F., Gnutzmann, S., Kus, M.: Quantum Signatures of Chaos, 4th edn. Springer, Berlin (2018)

    Book  Google Scholar 

  30. Stover, C.: Generalized Gell–Mann Matrix. MathWorld—A Wolfram Web Resource

  31. Gutkin, B., Braun, P., Akila, M., Waltner, D., Guhr, T.: Local correlations in dual-unitary kicked chains. arXiv:2001.0128

  32. Claeys, P.W., Lamacraft, A.: Ergodic and non-ergodic dual-unitary quantum circuits with arbitrary local Hilbert space dimension. arXiv:2009.03791

  33. Bertini, B., Kos, P., Prosen, T.: Exact correlation functions for dual-unitary lattice models in \(1+1\) dimensions. Phys. Rev. Lett. 123, 210601 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  34. Chan, A., De Luca, A., Chalker, J.T.: Spectral Lyapunov exponents in chaotic and localized many-body quantum systems. arXiv:2012.05295

Download references

Acknowledgements

This work has been supported by the EU Horizon 2020 program through the European Research Council (ERC) Advanced Grant OMNES No. 694544, by the Slovenian Research Agency (ARRS) under the Programme P1-0402, and by the Royal Society through the University Research Fellowship No. 201101 (BB). BB acknowledges useful discussions with Andrea De Luca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomaž Prosen.

Additional information

Communicated by A. Giuliani

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertini, B., Kos, P. & Prosen, T. Random Matrix Spectral Form Factor of Dual-Unitary Quantum Circuits. Commun. Math. Phys. 387, 597–620 (2021). https://doi.org/10.1007/s00220-021-04139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04139-2

Navigation