Skip to main content
Log in

Operator Growth Bounds from Graph Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let A and B be local operators in Hamiltonian quantum systems with N degrees of freedom and finite-dimensional Hilbert space. We prove that the commutator norm \(\Vert [A(t),B]\Vert \) is upper bounded by a topological combinatorial problem: counting irreducible weighted paths between two points on the Hamiltonian’s factor graph. Our bounds sharpen existing Lieb–Robinson bounds by removing extraneous growth. In quantum systems drawn from zero-mean random ensembles with few-body interactions, we prove stronger bounds on the ensemble-averaged out-of-time-ordered correlator \({\mathbb {E}}\left[ \Vert { [A(t),B]} \Vert _{\mathrm {F}}^2\right] \). In such quantum systems on Erdös–Rényi factor graphs, we prove that the scrambling time \(t_{\mathrm {s}}\), at which \(\Vert { [A(t),B]} \Vert _{\mathrm {F}}={\Theta }(1)\), is almost surely \(t_{\mathrm {s}}={\Omega }(\sqrt{\log N})\); we further prove \(t_{\mathrm {s}}={\Omega }(\log N) \) to high order in perturbation theory in 1/N. We constrain infinite temperature quantum chaos in the q-local Sachdev-Ye-Kitaev model at any order in 1/N; at leading order, our upper bound on the Lyapunov exponent is within a factor of 2 of the known result at any \(q>2\). We also speculate on the implications of our theorems for conjectured holographic descriptions of quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Note that \({\mathcal {L}}\) are antisymmetric, given the inner product (11). Clearly, \(\mathrm {e}^{{\mathcal {L}}t} \in \mathrm {SO}(\dim ({\mathcal {B}}))\) is an orthogonal transformation.

  2. This is because a factor graph is “bipartite” when interpreted as an ordinary graph.

  3. This notation will be used frequently in this paper to denote that j is a vertex, and lies in a certain graph – in this case, the causal tree \(T({\mathcal {M}})\). Also note that here we are explicitly thinking of the causal tree as a subgraph of the full factor graph.

  4. When thinking of \({\varGamma }\) as a line subgraph of the factor graph G, \(X^{\varGamma }_k \in {\varGamma }\) is the unique factor obeying \(d_G(i,X^{\varGamma }_k) = 2k-1\).

  5. The name is inspired by the transverse field Ising model, which is used in quantum annealing and optimization [28, 29].

  6. While there are terms in the sum on the right hand side where a coupling \(X\notin Q_{\mathrm {L,R}}\) can show up a single time, these terms are killed by the average.

  7. Note that there is an extra \(({\mathcal {L}}^\psi _{\ell _{\mathrm {R}}})^{m^\prime _{\ell _{\mathrm {R}}}}\) term on the left hand side of \({\mathbb {P}}_j\). Its forbidden factors are \(Y^\psi _{\ell _{\mathrm {R}}}\) are the same as \(({\mathcal {L}}^\psi _{\ell _{\mathrm {R}}})^{m_{\ell _{\mathrm {R}}}}\), which appears to the right of \({\mathbb {P}}_j\), because by definition \(Y^\psi _{\ell _{\mathrm {R}}}\) only depends on the relative position of factors to each other, and not on the location of the projector \({\mathbb {P}}_j\).

  8. If \(Z\sim \mathrm {Bernoulli}(p)\), \({\mathbb {P}}(Z=0) = 1-p\) and \({\mathbb {P}}(Z=1) = p\).

  9. The notion of typical being used here is that of Erdös and Rényi, as is canonical in random (hyper)graph theory [33] when a more specific ensemble is not provided.

  10. The genus 0 term in (111) is not as strong as this bound, a choice which was deliberately made to avoid cumbersome formulas in Theorem 18 and its proof.

References

  1. Sekino, Y., Susskind, L.: Fast scramblers. J. High Energy Phys. 10, 065 (2008). arXiv:0808.2096

    Article  ADS  Google Scholar 

  2. Hayden, P., Preskill, J.: Black holes as mirrors: quantum information in random subsystems. J. High Energy Phys. 09, 120 (2007). arXiv:0708.4025

    Article  MathSciNet  ADS  Google Scholar 

  3. Dieks, D.: Communication by EPR devices. Phys. Lett. A 92, 271 (1982)

    Article  ADS  Google Scholar 

  4. Wootters, W., Zurek, W.: A single quantum cannot be cloned. Nature 299, 802 (1982)

    Article  MATH  ADS  Google Scholar 

  5. Bentsen, G., Gu, Y., Lucas, A.: Fast scrambling on sparse graphs. Proc. Natl. Acad. Sci. 116, 6689 (2019). arXiv:1805.08215

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Gärttner, M., Bohnet, J.G., Safavi-Naini, A., Wall, M.L., Bollinger, J.J., Rey, A.M.: Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet. Nat. Phys. 13, 781 (2017). arXiv:1608.08938

    Article  Google Scholar 

  7. Li, J., Fan, R., Wan, H., Ye, B., Zeng, B., Zhai, H., Peng, X., Du, J.: Measuring out-of-time-ordered correlators on a nuclear magnetic resonance quantum simulator. Phys. Rev. X7, 031011 (2017). arXiv:1609.01246

    Article  Google Scholar 

  8. Shenker, S.H., Stanford, D.: Black holes and the butterfly effect. J. High Energy Phys. 03, 067 (2014). arXiv:1306.0622

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Lashkari, N., Stanford, D., Hastings, M., Osborne, T., Hayden, P.: Towards the fast scrambling conjecture. J. High Energy Phys. 04, 022 (2013). arXiv:1111.6580

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Lieb, E.H., Robinson, D.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  11. Poulin, D.: Lieb-Robinson bound and locality for general Markovian quantum dynamics. Phys. Rev. Lett. 104, 190401 (2010). arXiv:1003.3675

    Article  MathSciNet  ADS  Google Scholar 

  12. Hastings, M., Koma, T.: Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265, 781 (2006). arXiv:math-ph/0507008

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Dyson, F.J.: Divergence of perturbation theory in quantum electrodynamics. Phys. Rev. 85, 531 (1952)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Sachdev, S., Ye, J.: Gapless spin-fluid ground state in a random quantum Heisenberg magnet. Phys. Rev. Lett. 70, 3339 (1993). arXiv:cond-mat/9212030

    Article  ADS  Google Scholar 

  15. Maldacena, J., Stanford, D.: Comments on the Sachdev–Ye–Kitaev model. Phys. Rev. D 94, 106002 (2016). arXiv:1604.07818

    Article  MathSciNet  ADS  Google Scholar 

  16. Kitaev, A., Suh, S.J.: The soft mode in the Sachdev–Ye–Kitaev model and its gravity dual. J. High Energy Phys. 05, 183 (2018). arXiv:1711.08467

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Roberts, D.A., Stanford, D., Streicher, A.: Operator growth in the SYK model. J. High Energy Phys. 06, 122 (2018). arXiv:1802.02633

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Riddell, R.J., Jr.: The number of Feynman diagrams. Phys. Rev. 91, 1243 (1953)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Polchinski, J.: Combinatorics of boundaries in string theory. Phys. Rev. D 50, 6041 (1994). arXiv:hep-th/9407031

    Article  MathSciNet  ADS  Google Scholar 

  20. Saad, P., Shenker, S.H., Stanford, D.: JT gravity as a matrix integral. arXiv:1903.11115

  21. Maldacena, J.M.: The large \(N\) limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998). arXiv:hep-th/9711200

    Article  MathSciNet  MATH  Google Scholar 

  22. Kschischang, F.R., Frey, B.J., Loeliger, H.-A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47, 498 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stallings, J.R.: Topology of finite graphs. Invent. Math. 71, 551 (1983)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  25. Wang, Z., Hazzard, K.R.A.: Tightening the Lieb-Robinson bound in locally interacting systems. PRX Quantum 1, 010303 (2020). arXiv:1908.03997

    Article  Google Scholar 

  26. Konno, N.: Limit theorem for continuous-time quantum walk on the line. Phys. Rev. E 72(2) (2005)

  27. Lucas, A.: Non-perturbative dynamics of the operator size distribution in the Sachdev–Ye–Kitaev model. J. Math. Phys. 61, 081901 (2020). arXiv:1910.09539

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E58, 5355 (1998). arXiv:cond-mat/9804280

    ADS  Google Scholar 

  29. Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472 (2001). arXiv:quant-ph/0104129

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Lucas, A.: Quantum many-body dynamics on the star graph. arXiv:1903.01468

  31. Arrachea, L., Rozenberg, M.J.: The infinite-range quantum random Heisenberg magnet. Phys. Rev. B65, 224430 (2002). arXiv:cond-mat/0203537

    Article  ADS  Google Scholar 

  32. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  33. Schmidt-Pruzan, J., Shamir, E.: Component structure in the evolution of random hypergraphs. Combinatorica 5, 81 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  34. Bender, C.M., Orszag, S.A.: Asymptotic Methods and Perturbation Theory. Springer, Berlin (2010)

    Google Scholar 

  35. Chen, C.-F.: Concentration of OTOC and Lieb-Robinson velocity in random Hamiltonians. arXiv:2103.09186

  36. Witten, E.: An SYK-like model without disorder. arXiv:1610.09758

  37. Gurau, R.: The complete \(1/N\) expansion of a SYK-like tensor model. Nucl. Phys. B 916, 386 (2017). arXiv:1611.04032

    Article  MathSciNet  MATH  Google Scholar 

  38. Klebanov, I.R., Tarnopolsky, G.: Uncolored random tensors, melon diagrams, and the SYK models. Phys. Rev. D 95, 046004 (2017). arXiv:1611.08915

    Article  MathSciNet  ADS  Google Scholar 

  39. Gubser, S.S., Jepsen, C., Ji, Z., Trundy, B.: Higher melonic theories. J. High Energy Phys. 09, 049 (2018). arXiv:1806.04800

    Article  MATH  ADS  Google Scholar 

  40. Lucas, A., Osborne, A.: Operator growth bounds in a cartoon matrix model. J. Math. Phys. 61, 122301 (2020). arXiv:2007.07165

    Article  MathSciNet  MATH  ADS  Google Scholar 

  41. Lucas, A.: Operator size at finite temperature and Planckian bounds on quantum dynamics. arXiv:1809.07769

  42. Maldacena, J., Shenker, S.H., Stanford, D.: A bound on chaos. J. High Energy Phys. 08, 106 (2016). arXiv:1503.01409

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. Qi, X.-L., Streicher, A.: Quantum epidemiology: operator growth, thermal effects, and SYK. arXiv:1810.11958

  44. Han, X., Hartnoll, S.A.: Quantum scrambling and state dependence of the butterfly velocity. arXiv:1812.07598

  45. Chen, X., Gu, Y., Lucas, A.: Many-body quantum dynamics slows down at low density. SciPost Phys. 9, 071 (2020). arXiv:2007.10352

    Article  MathSciNet  ADS  Google Scholar 

  46. Zhuang, Q., Schuster, T., Yoshida, B., Yao, N.Y.: Scrambling and complexity in phase space. arXiv:1902.04076

  47. Nachtergaele, B., Raz, H., Schlein, B., Sims, R.: Lieb-Robinson bounds for harmonic and anharmonic lattices. Commun. Math. Phys. 286, 1073 (2009). arXiv:0712.3820

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. Banks, T., Fischler, W., Shenker, S.H., Susskind, L.: M theory as a matrix model: a conjecture. Phys. Rev. D 55, 5112 (1997). arXiv:hep-th/9610043

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. Nahum, A., Vijay, S., Haah, J.: Operator spreading in random unitary circuits. Phys. Rev. X8, 021014 (2018). arXiv:1705.08975

    Article  Google Scholar 

  50. von Keyserlingk, C.W., Rakovsky, T., Pollmann, F., Sondhi, S.L.: Operator hydrodynamics, OTOCs, and entanglement growth in systems without conservation laws. Phys. Rev. X8, 021013 (2018). arXiv:1705.08910

    Article  Google Scholar 

  51. Tran, M.C., Guo, A.Y., Su, Y., Garrison, J.R., Eldredge, Z., Foss-Feig, M., Childs, A.M., Gorshkov, A.V.: Locality and digital quantum simulation of power-law interactions. Phys. Rev. X9, 031006 (2019). arXiv:1808.05225

    Article  Google Scholar 

  52. Chen, C.-F., Lucas, A.: Finite speed of quantum scrambling with long range interactions. Phys. Rev. Lett. 123, 250605 (2019). arXiv:1907.07637

    Article  ADS  Google Scholar 

  53. Kuwahara, T., Saito, K.: Strictly linear light cones in long-range interacting systems of arbitrary dimensions. Phys. Rev. X10, 031010 (2020). arXiv:1910.14477

    Article  Google Scholar 

  54. Tran, M.C., Deshpande, A., Guo, A.Y., Lucas, A., Gorshkov, A.V.: Optimal state transfer and entanglement generation in power-law interacting systems. arXiv:2010.02930

  55. Tran, M.C., Chen, C.-F., Ehrenberg, A., Guo, A.Y., Deshpande, A., Hong, Y., Gong, Z.-X., Gorshkov, A.V., Lucas, A.: Hierarchy of linear light cones with long-range interactions. Phys. Rev. X10, 031009 (2020). arXiv:2001.11509

    Article  Google Scholar 

  56. Kuwahara, T., Saito, K.: Absence of fast scrambling in thermodynamically stable long-range interacting systems. Phys. Rev. Lett. 126, 030604 (2021). arXiv:2009.101244

    Article  MathSciNet  ADS  Google Scholar 

  57. Chen, C.-F., Lucas, A.: Optimal Frobenius light cone in spin chains with power-law interactions. arXiv:2105.09960

  58. Parker, D.E., Cao, X., Avdoshkin, A., Scaffidi, T., Altman, E.: A universal operator growth hypothesis. Phys. Rev. X9, 041017 (2019). arXiv:1812.08657

    Article  Google Scholar 

  59. Avdoshkin, A., Dymarsky, A.: Euclidean operator growth and quantum chaos. Phys. Rev. Res. 2, 043234 (2020). arXiv:1911.09672

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4302, by a Research Fellowship from the Alfred P. Sloan Foundation through Grant FG-2020-13795, and by the Air Force Office of Scientific Research through Grant FA9550-21-1-0195.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Lucas.

Additional information

Communicated by H-T.Yau

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CF., Lucas, A. Operator Growth Bounds from Graph Theory. Commun. Math. Phys. 385, 1273–1323 (2021). https://doi.org/10.1007/s00220-021-04151-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04151-6

Navigation