Skip to main content
Log in

Basin progress: active deformation analysis by tectonostratigraphic elements and geophysical methods on North Anatolian Fault System (Eastern Marmara Region, Turkey)

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The Northern Branch of the North Anatolian Fault System controls and deforms the Izmit Basin and the Sapanca Lake Basin in the study area. Unlike the Sapanca Lake Basin, the oblique normal faults with WNW–ESE trending with maximum length of 5 km in the south of the basin have contributed to the deformation process in the formation of Izmit Basin. The fault sets mainly incline to the north. The N-S width of the dextral strike-slip active deformation was determined as 9 km at Izmit basin and 3.8 km at Sapanca Lake basin. Further, the minimum principal stress axes (σ3) vary in the trending ranges of N11°–74°E, which are caused by the transtensional stresses associated with strike-slip faulting in the Izmit Basin by a different tectonic source than the Sapanca Lake Basin. Besides, the crust depth of main strand of NAFS-NB was determined up to 1112 m by magnetic method. The secondary faults were determined by both magnetic and resistivity methods up to a depth of 110 m. The depression area between Izmit bay and Sapanca Lake on the northern Anatolian fault is an integrated basin with two dextral strike-slip tectonic origins. Thus, the Izmit Basin, along with the main strike-slip faulting, has been developed in the asymmetric negative flower structure, where only the southern boundary has become a fault. The Sapanca Lake Basin is a lazy-Z-shaped pull-apart system formed by the E–W trending fault as a releasing bend. A simple shear deformation ellipsoid with a long axis of approximately 35 km on the Northern Branch of the North Anatolian Fault System is defined for the Izmit–Sapanca integrated basin. Therefore, intra-basin deposits have different depths estimated from the gravity data in the Izmit–Sapanca integrated basin, and the maximum sediment thickness estimated is 2200 m in the middle of the Izmit Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Akartuna M (1968) Armutlu Yarımadası’nın jeolojisi: İstanbul Üniv. Fen Fak. Monografileri (Tabii ilimler kısmı), 20, 105 s (ın Turkısh)

  • Akbayram K, Okay AI, Satır M (2013) Early Cretaceous closure of the intra-Pontide Ocean in western Pontides (northwestern Turkey). J Geodyn 65:38–55

    Article  Google Scholar 

  • Akbayram K, Sorlien CC, Okay AI (2016) Evidence for a minimum 52±1 km of total offset along the northern branch of the North Anatolian Fault in northwest Turkey. Tectonophysics 668:35–41

    Article  Google Scholar 

  • Alpar B, Yaltırak C (2002) Characteristic features of the North Anatolian Fault in the eastern Marmara region and its tectonic evolution. Mar Geol 190(1–2):329–350

    Article  Google Scholar 

  • Altınlı İE (1968) İzmit-Hereke-Kurucadağ alanının jeoloji incelemesi. Maden Tetkik ve Arama Dergisi; Sayı: 71 (ın Turkısh)

  • Anderson EM (1951) The dynamics of faulting, 2nd edn. Olivier & Boyd, Edinburgh

    Google Scholar 

  • Angelier J (1994) Fault slip analysis and paleostress reconstruction. In: Hancock PL (ed) Continental deformation. Pergamon Press, Oxford, pp 53–100

    Google Scholar 

  • Armijo R, Meyer B, Navarro S, King G, Barka A (2002) Asymmetric slip partitioning in the Sea of Marmara pull-apart: a clue to propagation processes of the North Anatolian fault? Terra Nova 14(2):80–86

    Article  Google Scholar 

  • Aşcı M, Doğan B, Yas T, Çaka D (2016) Determination of the deep fault geometry along the Southern Branch of the North Anatolian fault system by using resistivity and magnetic methods. J Asian Earth Sci 125(1):117–137

    Article  Google Scholar 

  • Ateş A, Kayıran T, Sincer I (2003) Structural Interpretation of the Marmara Region, NW Turkey, from Aeromagnetic, Seismic and Gravity Data. Tectonophysics 367(1):41–99

    Article  Google Scholar 

  • Bargu S (1993) Stratigraphy of Middle Pleistocene deposits of the Cırcumference of Lake Sapanca, Its Correlation with the deposits in the adjacent area and its tectonic features, İstanbul Üniversitesi, Mühendislik Fakültesi, Yerbilimleri Dergisi, Jeoloji Eğitiminde 63. Yıl Özel Sayısı, 8,1-2-3,35-49

  • Bargu S, Sakınç M (1990) The geology and the structural characteristics of the area between Gulf of Izmit and Lake Iznik. Istanbul Universitesi Mühendislik Fakültesi Yerbilimleri Dergisi 6:45–76

    Google Scholar 

  • Barka AA (1985) Geology and Tectonic evolution of some Neogene-Quaternary basins, in the North Anatolian fault zone. (In Turkish with English abstract) In: “Ketin Symposium”, Spec. Publ. Geol. Soc. Turkey, pp 209–227

  • Barka AA (1992) The North Anatolian fault zone. Anneles Tectonicae 6:174–195

    Google Scholar 

  • Barka A (1997) Neotectonics of the Marmara region. Active Tectonics of Northwestern Anatolia—The MARMARA Poly-Project, pp 55–87

  • Barka A (1999) The 17 august 1999 Izmit earthquake. Science 285(5435):1858–1859

    Article  Google Scholar 

  • Barka A, Akyuz HS, Altunel E, Sunal G, Cakir Z, Dikbas A, Yerli B, Armijo R, Meyer B, de Chabalier JB, Rockwell T, Dolan JR, Hartleb R, Dawson T, Christofferson S, Tucker A, Furnal T, Langridge R, Stenner H, Lettis W, Bachhuber J, Page W (2002) The surface rupture and slip distribution of the 17 August 1999 Izmit earthquake (M 7.4), North Anatolian fault. Bull Seismol Soc Am 92(1):43–60

    Article  Google Scholar 

  • Bedrosian PA, Unsworth MJ, Egbert G (2002) Magnetotelluric imaging of the creeping segment of the San Andreas Fault Near Hollister. Geophys Res Lett 29(11):1–4

    Article  Google Scholar 

  • Bergerat F, Angelier J, Gudmundsson A, Torfason H (2003) Push-ups, fracture patterns, and palaeoseismology of the Leirubakki Fault, South Iceland. J Struct Geol 25(4):591–609

    Article  Google Scholar 

  • Bohnhoff M, Grosser H, Dresen G (2006) Strain partitioning and stress rotation at the North Anatolian fault zone from aftershock focal mechanisms of the 1999 Izmit M w= 7.4 earthquake. Geophys J Int 166(1):373–385

    Article  Google Scholar 

  • Bohnhoff M, Martínez GP, Bulut F, Stierle E, Ben-Zion Y (2016a) Maximum earthquake magnitudes along different sections of the North Anatolian fault zone. Tectonophysics 674:147–165

    Article  Google Scholar 

  • Bohnhoff M, Ickrath M, Dresen G (2016b) Seismicity distribution in conjunction with spatiotemporal variations of coseismic slip and postseismic creep along the combined 1999 Izmit-Düzce rupture. Tectonophysics 686:132–145

    Article  Google Scholar 

  • Bosch M, Mc Daughey G (2001) joint inversion of gravity and magnetic data under lithological constraints. Lead Bridge 20:887–881

    Google Scholar 

  • Bozkurt E (2001) Neotectonics of Turkey—a synthesis. Geodin Acta 14(1–3):3–30

    Article  Google Scholar 

  • Bulut F, Bohnhoff M, Aktar M, Dresen G (2007) Characterization of aftershock-fault plane orientations of the 1999 İzmit (Turkey) earthquake using high-resolution aftershock locations. Geophys Res Lett 34(20):10

    Article  Google Scholar 

  • Büyükmeriç İ (2018) Personal communation

  • Çağlar İ (2001) Electrical resistivity structure of the Northwestern Anatolia and Its Tectonic implications for the Sakarya and Bornova Zones. Phys Earth Planet Int 125(1–4):95–110

    Article  Google Scholar 

  • Carey-Gailhardis E, Mercier JL (1987) A numerical method for determining the state of stress using focal mechanisms of earthquake populations: application to Tibetan teleseisms and microseismicity of southern Peru. Earth Planet Sci Lett 82:165–179

    Article  Google Scholar 

  • Delvaux D, Sperner B (2003) New aspects of tectonic stress inversion with reference to the TENSOR program. Geol Soc Lond Spec Publ 212:75–100

    Article  Google Scholar 

  • Delvaux D, Moeys R, Stapel G, Melnıkov A, Ermıkov B (1997) Paleostress reconstructions and geodynamics of the Baikal Region, Central Asia, Part II: Paleozoic and Mesozoic Pre-rift evolution. Tectonophysics 282(1–4):1–38

    Article  Google Scholar 

  • Dobróka M, Gyulaı Á, Ormos T, Csókás J, Dresen L (1991) Joint inversion of seismic and geoelectric data recorded in an underground coal mine. Gophys Prospect 39:643–665

    Article  Google Scholar 

  • Doğan B (2001) The quaternary stratigraphy and tectonic analyses of the Izmit Bay Basin the easternmost part of the sea of Marmara Basin System. European Union of Geosciences Theme LS, Lithospheric Structure and Tectonics, 292

  • Doğan B, Tüysüz O, Şanlı FB (2015) Tectonostratigraphic evolution of the basins on the southern branch of the North Anatolian Fault System in the SE Marmara Region, Turkey. Int J Earth Sci 104(2):389–418

    Article  Google Scholar 

  • Dooley T, McClay K (1997) Analog modeling of pull-apart basins. AAPG Bull 81(11):1804–1826

    Google Scholar 

  • Eisenlohr T (1997) The thermal springs of the Armutlu Peninsula (NW Turkey) and their relationship to geology and tectonic. In: Schindler C, Pfister M (eds) Active Tectonics of Northwestern Anatolia—The Marmara Poly-Project. A multidisciplinary approach by space-geodesy, geology, hydrogeology, geothermics and seismology. ETH, Zurich, pp 197–228

    Google Scholar 

  • Elmas A, Yigitbaş E (2001) Ophiolite emplacement by strike-slip tectonics between the Pontid Zone and the Sakarya Zone in the northwestern Anatolia, Turkey. Int J Earth Scı 90(2):257–269

    Article  Google Scholar 

  • Emre Ö, Erkal T, Tchapalyga A, Kazancı N, Kecer M, Ünay E (1998) Neogene-Quaternary evolution of the eastern Mar-mara region, northwest Turkey. Bull Mineral Res Explor Inst Turkey 120:119–145

    Google Scholar 

  • Escalona A, Mann P (2003) Three-dimensional structural architecture and evolution of the Eocene pull-apart basin, central Maracaibo basin, Venezuela. Mar Pet Geol 20(2):141–161

    Article  Google Scholar 

  • Gallardo-Delgado LA, Perez-Flores MA, Gomez-Trevıno E (2003) A versatile algorithm for joint 3D inversion of gravity and magnetic data. Geophysics 68:949–959

    Article  Google Scholar 

  • Göncüoğlu MC, Erendil M, Tekeli O, Aksay A, Kuşçu İ, Ürgün BM (1987) Geology of the Armutlu Peninsula. Guidebook for the field excursion along western Anatolia, Turkey. M.T.A Publ, 12–18

  • Gülen L, Demirbağ E, Çağatay MN, Utkucu M, Yıldırım E, Yalçın H, Yalamaz B (2014) Sapanca Gölü’nün ayrıntılı batimetrisi, genç çökel istifi, aktif yapısal unusurları vasıtasıyla yakın bölgesinin sismojenik davranışının incelenmesi, Turkish National Union Of Geodesy And Geophysics (Tnugg), National Earthquake Program of TNUGG, Project Number: TUJJB-UDP-3-10. Sakarya, Türkiye, pp 1–155

  • Gülen L, Demirbağ E, Çağatay MN, Yıldırım E, Yalamaz B (2015) Delineation of thge North Anatolian Fault within the Sapanca Lake and Correlation of Seismo-Turbidites with Major Earthquakes, American Geopgysical Union (AGU), Fall Meeeting abstract id. NH23B-1881

  • Gürbüz A, Gürer ÖF (2008) Tectonic geomorphology of the North Anatolian fault zone in the lake Sapanca Basin (eastern Marmara Region, Turkey). Geosci J 12(3):215–225

    Article  Google Scholar 

  • Haber E, Oldenburg D (1997) Joint Inversion: A Structural Approach. Inverse Prob 13(1):63–77

    Article  Google Scholar 

  • Harding TP (1983) Divergent wrench fault and negative flower structure, Andaman Sea. In: Seismic expression of structural styles—a picture and work atlas. American Assocciated Petroleum Geology Studies in Geology, 15(3):4.2-1.–4.2-8.

  • Hempton MR, Dunne LA (1984) Sedimentation in pull-apart basins: active examples in Eastern Turkey. J Geol 92:513–530

    Article  Google Scholar 

  • Hempton MR, Neher K (1986) Experimantal fracture strain and subsidence patterns over en-echelon strike-slip faults: implications for the structural evolution of pull-apart basins. J Struct Geol 8:597–605

    Article  Google Scholar 

  • Herece E, Akay E (2003) Atlas of North Anatolian Fault (NAF), Special Publication Series 2, General Directorate of Mineral Research and Exploration, Ankara

  • Honkura Y, Işıkara AM (1991) Multidisciplinary research on fault activity in the Western Part of the North Anatolian Fault Zone. Tectonophysics 193(4):347–357

    Article  Google Scholar 

  • Huerta AD, Rodgers DW (1996) Kinematic and dynamic analysis of a lowangled strike-slip fault: the lake Creek Fault of south-central Idaho. J Struct Geol 18:585–593

    Article  Google Scholar 

  • Ickrath M, Bohnhoff M, Bulut F, Dresen G (2014) Stress rotation and recovery in conjunction with the 1999 Izmit Mw 7.4 earthquake. Geophys J Int 196(2):951–956

    Article  Google Scholar 

  • Ickrath M, Bohnhoff M, Dresen G, Martinez GP, Bulut F, Kwiatek G, Germer O (2015) Detailed analysis of spatiotemporal variations of the stress field orientation along the Izmit-Düzce rupture in NW Turkey from inversion of first-motion polarity data. Geophys J Int 202(3):2120–2132

    Article  Google Scholar 

  • Kahle HG, Straub C, Reilinger R, McClusky S, King R, Hurst K, Veis G, Kastens K, Cross P (1998) The strain rate field in the eastern Mediterranean region, estimated by repeated GPS measurements. Tectonophysics 294(3–4):237–252

    Article  Google Scholar 

  • Kaya T, Kasaya T, Tank SB, Ogawa Y, Tunçer MK, Oshiman N, Honkura Y, Matsushima M (2013) Electrical characterization of the North Anatolian Fault Zone underneath the Marmara Sea, Turkey by ocean bottom magnetotellurics. Geophys J Int 193(2):664–677

    Article  Google Scholar 

  • KOERI (2020) Kandilli Observatory and Earthquake Research Institute, İstanbul, Turkey. http://www.koeri.boun.edu.tr

  • Koral H (2007) Modes, rates and geomorphological consequences of active tectonics in the Marmara Region, NW Turkey—a critical overview based on seismotectonic field observations. Quaternary International, 167–168, 149–161

  • Le Pichon X, Şengör AMC, Demirbağ E, Rangin C, İmren C, Armijo R, Görür N, Çağatay N, Mercier de Lapinay M, Meyer B, Saatçılar R, Tok B (2001) The Active Main Marmara fault. Earth Platernary Sci Lett 192(4):595–616

    Article  Google Scholar 

  • Le Pichon X, Chamot-Rooke N, Rangin C, Şengör AMC (2003) The North Anatolian fault in the sea of Marmara. J Geophys Res Solid Earth 108(B4):2179

    Article  Google Scholar 

  • Le Pichon X, Şengör AC, Kende J, İmren C, Henry P, Grall C, Karabulut H (2016) Propagation of a strike-slip plate boundary within an extensional environment: the westward propagation of the North Anatolian Fault. Can J Earth Sci 53(11):1416–1439

    Article  Google Scholar 

  • Leroy SA, Boyraz S, Gürbüz A (2009) High-resolution palynological analysis in Lake Sapanca as a tool to detect recent earthquakes on the North Anatolian Fault. Quatern Sci Rev 28(25–26):2616–2632

    Article  Google Scholar 

  • Lettis W, Bachhuber J, Witter R, Brankman C, Randolph CE, Barka A, Page WD, Kaya A (2002) Influence of releasing step-overs on surface fault rupture and fault segmentation: Examples from the 17 August 1999 Izmit earthquake on the North Anatolian fault, Turkey. Bull Seismol Soc Am 92(1):19–42

    Article  Google Scholar 

  • Loke MH (2019) Tutorial: 2-D and 3-D Electrical Imaging Surveys, p 216. http://www.geotomosoft.com/downloads

  • Loke MH, Barker RD (1995) Least-squares deconvolution of apparent resistivity pseudosections. Geophysics 60(6):1682–1690

    Article  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441

    Article  Google Scholar 

  • Meju MA (1994) Geophysical data analysis: understanding inverse problem theory and practice. SEG

  • MTA (2019) General directorate of mineral research and exploration. Ankara, Turkey. http://yerbilimleri.mta.gov.tr/anasayfa.aspx

  • Najdahmadi B, Bohnhoff M, Ben-Zion Y (2016) Bimaterial interfaces at the Karadere segment of the North Anatolian Fault, northwestern Turkey. J Geophys Res Solid Earth 121(2):931–950

    Article  Google Scholar 

  • Nguyen F, Garambois S, Jongmans D, Pirard E, Loke MH (2005) Image processing of 2D resistivity data for imaging faults. J Appl Geophys 57(4):260–277

    Article  Google Scholar 

  • Nilsen TH, Sylvester AG (1999) Strike-slip basins: part 1. Lead Edge 18(10):1146–1152

    Article  Google Scholar 

  • Ogawa Y, Honkura Y (2004) Mid-crustal electrical conductors and their correlations to seismicity and deformation at Itoigawa-Shizuoka Tectonic Line, Central Japan, December 56(12):1285–1291

  • Ogawa Y, Mishina M, Goto T, Satoh H, Oshiman N, Kasaya T, Takahashi Y, Nisitani T, Sakanaka S, Uyeshima M, Takahashi Y, Honkura Y, Matsushima M (2001) Magnetotelluric imaging of fluids in intraplate earthquakes zones, NE Japan Back Arc. Geophys Res Lett 28:3741–3744

    Article  Google Scholar 

  • Okay Aİ, Tüysüz O (1999) Tethyan sutures of nothern Turkey. The Mediterranean Basin: Tertiary extension with in the Alpine Orogen. In: Durand B, Jolivet L, Horvath F, Séranne ve M (eds). Special Publication Geological Society of London, vol. 156, pp 475–515

  • Okay Aİ, Kaşlılar-Özcan A, Imren C, Boztepe-Güney A, Demirbağ E, Kuşçu İ (2000) Active faults and evolving strike-slip basins in the Marmara Sea, northwest Turkey: a multichannel seismic reflection study. Tectonophysics 32(2):189–218

    Article  Google Scholar 

  • Örgülü G, Aktar M (2001) Regional moment tensor inversion for strong aftershocks of the August 17, 1999 Izmit earthquake (Mw= 7.4). Geophys Res Lett 28(2):371–374

    Article  Google Scholar 

  • Oshiman N, Tunçer MK, Honkura Y, Barış Ş, Yazıcı O, Işıkara AM (1991) A strategy of tectonomagnetic observation for monitoring possible precursors to earthquakes in the Western Part of the North Anatolian Fault Zone, Turkey. Tectonophysics 193(4):359–368

    Article  Google Scholar 

  • Özalaybey S, Zor E, Ergintav S, Tapırdamaz MC (2011) Investigation of 3-D basin structures in the İzmit Bay Area (Turkey) by single-station microtremor and gravimetric methods. Geophys J Int 186(2):883–894

    Article  Google Scholar 

  • Pınar A, Honkura Y, Kuge K (2001) Seismic activity triggered by the 1999 Izmit earthquake and its implications for the assessment of future seismic risk. Geophys J Int 146(1):F1–F7

    Article  Google Scholar 

  • Pucci S, Civico R, Villani F, Ricci T, Delcher E, Finizola A, Sapia V, De Martini PM, Pantosti D, Barde-Cabusson S, Brothelande E, Gusset R, Mezon C, Orefice S, Peltier A, Poret M, Torres L, Suski B (2016) Deep electrical resistivity tomography along the tectonically active Middle Aterno Valley (2009 L’Aquila earthquake area, central Italy). Geophys J Int 207(2):967–982

    Article  Google Scholar 

  • Raju DCV (2003) LIMAT: a computer program for least-squares inversion of magnetic anomalies over long tabular bodies. Comput Geosci 29(1):91–98

    Article  Google Scholar 

  • Reilinger R, McClusky S, Vernant P, Lawrance S, Ergintav S, Çakmak R, Özener H, Kadirov F, Guliev İ, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, ArRajehi A, Paradissis D, Aydrus A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov S, Gomez F, Ghazzi R, Karam G (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111:B05411. https://doi.org/10.1029/2005JB004051

    Article  Google Scholar 

  • Sakınç M, Bargu S (1989) Izmit Körfezi güneyindeki Geç Pleyistosen (Tireniyen) çökel stratigrafisi ve bölgenin neotektonik özellikleri. Türkiye Jeoloji Bülteni 32:51–64

    Google Scholar 

  • Şaroğlu F (1988) Age and offset of the North Anatolian fault. Middle East Tech Univ J Pure Appl Sci 31:1–17

    Google Scholar 

  • Schwab MJ, Werner P, Dulski P, McGee E, Nowaczyk NR, Bertrand S, Leroy SA (2009) Palaeolimnology of Lake Sapanca and identification of historic earthquake signals, northern Anatolian fault zone (Turkey). Quatern Sci Rev 28(11–12):991–1005

    Article  Google Scholar 

  • Şengör AMC (1979) The North Anatolian transform fault: its age, offset and tectonic significance. J Geol Soc Lond 136:269–282

    Article  Google Scholar 

  • Şengör AMC (1980) Türkiye’nin neotektoniğinin esasları. Türkiye Jeoloji Kurumu yayını, 40

  • Şengör AMC, Görür N, Şaroğlu F (1985) Strike-Slip faulting and related basin formation in zones of tectonic escape. Strike-slip deformation, basin formation and sedimentation, Soceity of Economic Paleontologists and Mineralogists. Spec Publ 37:227–264

    Google Scholar 

  • Şengör AMC, Tüysüz O, İmren C, Sakınç M, Eyidoğan H, Görür G, Le Pichon X (2005) The North Anatolian Fault: a new look. Annu Rev Earth Planet Sci 33:13–112

    Article  Google Scholar 

  • Sperner B, Zweigel P (2010) A plea for more caution in fault–slip analysis. Tectonophysics 482(1–4):29–41

    Article  Google Scholar 

  • Straub C, Kahle HG (1997) Recent crustal deformation and strain accumulation in the Marmara Sea region, NW Anatolia, inferred from repeated GPS measurements. In: Schindler C, Pfister M (eds) Active tectonics of northwest Anatolia—the Marmara Poly-project. Hochschulverlag AG an der ETH Zürich, pp 417–447

  • Suzuki K, Toda S, Kusunoki K, Fujımitsu Y, Mogi T, Jomori A (2000) Case studies of electrical and electromagnetic methods applied to mapping active faults beneath the thick quaternary. Eng Geol 56(1–2):29–45

    Article  Google Scholar 

  • Swanson MT (2005) Geometry and kinematics of adhesive wear in brittle strike slip fault zones. J Struct Geol 27(5):871–887

    Article  Google Scholar 

  • Sylvester AG (1988) Strike-slip faults. Geol Soc Am Bull 100:1666–1703

    Article  Google Scholar 

  • Tank SB, Honkura Y, Ogawa Y, Matsushima M, Oshiman N, Tunçer MK, Çelik C, Tolak E, Işıkara AM (2005) Magnetotelluric Imaging of the Fault Rupture Area of the 1999 İzmit (Turkey) Earthquake. Phys Earth Planet Inter 150(1–3):213–225

    Article  Google Scholar 

  • Tarı U. (2007) İzmit Körfezi ve çevresinin morfotektoniği [Morphotectonics in the Gulf of İzmit and surroundings]. Ph.D. thesis, Istanbul Technical University, Istanbul, p 293

  • Tarı U, Tüysüz O (2011) İzmit Körfezi ve çevresinin morfotektoniği. İtü Dergisi/d, 7

  • Tarı U, Tüysüz O (2016) The effects of the North Anatolian fault on the geomorphology in the Eastern Marmara region, northwestern Turkey. Geodin Acta 28(3):139–159

    Article  Google Scholar 

  • Taylor G, Rost S, Houseman GA, Hillers G (2019) Near-surface structure of the North Anatolian Fault zone from Rayleigh and Love wave tomography using ambient seismic noise. Solid Earth 10:363–378

    Article  Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1976) Gravity methods, applied geophysics, 1st edn. Cambridge University Press, Cambridge, pp 7–103

    Google Scholar 

  • Ünay E, Emre Ö, Erkal T, Keçer M (2001) The rodent fauna from the Adapazarı pull apart basin (NW Anatolia): its bearings on the age of the North Anatolian Fault. Geodin Acta 14:169–175

    Article  Google Scholar 

  • Vardar D, Öztürk K, Yaltırak C, Alpar B, Tur H (2014) Late Pleistocene-Holocene evolution of the southern Marmara shelf and sub-basins: middle strand of the North Anatolian fault, southern Marmara Sea, Turkey. Mar Geophys Res 35(1):69–85

    Article  Google Scholar 

  • Wise DJ, Cassidy J, Locke CA (2003) Geophysical imaging of the Quaternary Wairoa North Fault, New Zealand: a case study. J Appl Geophys 53(1):1–16

    Article  Google Scholar 

  • Woodcock NH, Fischer M (1986) Strike-slip duplexes. J Struct Geol 8(7):725–735

    Article  Google Scholar 

  • Wu JE, Mcclay K, Whitehouse P, Dooley T (2009) 4D analogue modelling of transtensional pull-apart basins. Mar Petrol Geol 26:1608–1623

    Article  Google Scholar 

  • Yaltırak C (2002) Tectonic evolution of the Marmara Sea and its surroundings. Mar Geol 190(1–2):493–529

    Article  Google Scholar 

  • Yiğitbaş E, Elmas A, Yılmaz Y (1999) Pre-Cenozoic tectono-stratigraphic components of the Western Pontides and their geological evolution. Geol J 34:55–74

    Article  Google Scholar 

  • Yılmaz Y, Genç ŞC, Yiğitbaş E, Bozcu M, Yılmaz K (1995) Geological evolution of the late Mesozoic continental margin of Northwestern Anatolia. Tectonophysics 243:155–171

    Article  Google Scholar 

  • Zheng Y, Arkanı-Hamed J (1998) Joint inversion of gravity and magnetic anomalies of Eastern Canada. Can J Earth Sci Rev Can Sci Tere 35(7):832–853

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Kocaeli University, Scientific Research Projects Coordination Unit, for funding the project with grant number of 2016/064. Also, a special thanks is extended to the Kocaeli Metropolitan Municipality for providing the gravity data collected by the Scientific and Technological Research Council of Turkey, Marmara Research Center for Earth and Marine Sciences in 2008. We would like to thank Prof. Dr. Ümit Yalçın Kalyoncuoğlu for providing the RES2DINV program used in the inversion of resistivity data. Unfortunately, Prof. Dr. Ümit Yalçın Kalyoncuoğlu passed away from a heart attack very sadly. He had a very helpful and cheerful personality. We will never forget him with his warm memories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bülent Doğan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doğan, B., Aşci, M., Karakaş, A. et al. Basin progress: active deformation analysis by tectonostratigraphic elements and geophysical methods on North Anatolian Fault System (Eastern Marmara Region, Turkey). Nat Hazards 109, 1675–1716 (2021). https://doi.org/10.1007/s11069-021-04894-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-021-04894-4

Keywords

Navigation