Skip to main content
Log in

Structure of the Solution Set to Fractional Differential Inclusions with Impulses at Variable Times on Compact Interval

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

A topological structure of the solution set to a class of fractional differential inclusions with (or impulses at variable times) is investigated. It is shown that the solution set is an \(R_{\delta }\)-set under some assumptions by the well-known theorem Bothe, D.: Multivalued perturbations of m-accretive differential inclusions. Israel J. Math. 108, 109–138 (1998) and the generalized Gronwall inequality under suitable Banach space. One example is listed for illustrating the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Lakshmikantham, V., Papageorgiou, N.S., Vasundhara, J.: The method of upper and lower solutions and monotone technique for impulsive differential equations with variable moments. Appl. Anal. 15, 41–58 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lakshmikantham, V., Leela, S., Kaul, S.: Comparison principle for impulsive differential equations with variable times and Stability theory. Nonlinear Anal. TMA 22(4), 499–503 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kaul, S.L., Lakshmikantham, V., Leela, S.: Extremal solutions, comparison principle and stability criteria for impulsive differential equations with variable times. Nonlinear Anal. 22, 1263–1270 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kaul, S.L.: On the existence of extremal solutions for impulsive differential equations with variable time. Nonlinear Anal. TMA. 25(4), 345–362 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kaul, S.L., Lakshmikantham, V.: Higher derivatives of Lyapunov functions and cone valued Lyapunov functions. Nonlinear Anal. 26, 1555–1564 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Frigon, M., O’Regan, D.: Impulsive differential equations with variable times. Nonlinear Anal. 26(12), 1913–1922 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bajo, I., Liz, E.: Periodic boundary value problem for first order differential equations with impulses at variable times. J. Math. Anal. Appl. 204, 65–73 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bajo, I.: Pulse accumation in impulsive differential equations with variable times. J. Math. Anal. Appl. 216, 211–217 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kaul, S.K.: Vector Lyapunov functions in impulsive variable-time differential systems. Nonlinear Anal. 30(5), 2695–2698 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Frigon, M., O’Regan, D.: First order impulsive initial and periodic problems with variable moments. J. Math. Anal. Appl. 233, 730–739 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fu, X.L., Qi, J.G., Liu, Y.S.: General comparison principle for impulsive variable time differential equations with application. Nonlinear Anal. 42, 1421–1429 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Qi, J.G., Fu, X.L.: Existence of limit cycles of impulsive differential equations with impulses at variable times. Nonlinear Anal. 44, 345–353 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dubeau, F., Karrakchou, J.: State-dependent impulsive delay-differential equations. Appl. Math. Lett. 15, 333–338 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Benchohra, M., Henderson, J., Ntouyas, S.K., Ouahab, A., Ouahab, A.: Nonresonance impulsive functional differential equations with variable times. Comput. Math. Appl. 47, 1725–1737 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Benchohra, M., Graef, J.R., Ntouyas, S.K., Ouahab, A.: Upper and lower solutions method for impulsive differential inclusions with nonlinear boundary conditions and variable times. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 12(3–4), 383–396 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Benchohra, M., Henderson, J., Ntouyas, S.K., Ouahab, A.: Impulsive functional differential equations with variable times and infinite delay. Int. J. Appl. Math. Sci. 2(1), 130–148 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Liu, L., Sun, J.T.: Existence of periodic solution for a harvested system with impulses at variable times. Phys. Lett. A 360, 105–108 (2006)

    Article  MATH  Google Scholar 

  18. Belarbi, A., Benchohra, M.: Existence theory for perturbed impulsive hyperbolic differential inclusions with variable times. J. Math. Anal. Appl. 327, 1116–1129 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Graef, J.R., Ouahab, A.: Global existence and uniqueness results for impulsive functional differential equations with variable times and multiple delays. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 16, 27–40 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Akhmet, M.U., Turan, M.: Differential equations on variable time scales. Nonlinear Anal. 70, 1175–1192 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peng, Y., Xiang, X., Wang, C.: A class of differential equations with impulses at variable times on Banach spaces. Nonlinear Anal. 71, 1312–1319 (2009)

    Article  MathSciNet  Google Scholar 

  22. Peng, Y., Xiang, X., Jiang, Y.: A class of semilinear evolution equations with impulses at variable times on Banach spaces. Nonlinear Anal. RWA 11, 3984–3992 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Abbas, S., Agarwal, R.P., Benchohra, M.: Darboux problem for impulsive partial hyperbolic differential equations of fractional order with variable times and infinite delay. Nonlinear Anal. HS 4, 818–829 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Gabor, G.: The existence of viable trajectories in state-dependent impulsive systems. Nonlinear Anal. 72, 3828–3836 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Benchohra, M., Berhoun, F.: Impulsive fractional differential equations with variable times. Comput. Math. Appl. 59, 1245–1252 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ezzinbi, K., Tour, H., Zabsonre, I.: An existence result for impulsive functional differential equations with variable times. Afr. Mat. 24, 407–415 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Şaylı, M., Yılmaz, E.: Periodic solution for state-dependent impulsive shunting inhibitory CNNs with time-varying delays. Neural Netw. 68, 1–11 (2015)

    Article  MATH  Google Scholar 

  28. Liu, C., Liu, W.P., Yang, Z., Liu, X.Y., Li, C.D., Zhang, G.J.: Stability of neural networks with delay and variable-time impulses. Neurocomputing 171, 1644–1654 (2016)

    Article  Google Scholar 

  29. Li, H.F., Li, C.D., Huang, T.W.: Periodicity and stability for variable-time impulsive neural networks. Neural Netw. 94, 24–33 (2017)

    Article  MATH  Google Scholar 

  30. Hakl, R., Pinto, M., Tkachenko, V., Trfimchuk, S.: Almost periodic evolution systems with impulse action at state-dependent moments. J. Math. Anal. Appl. 446, 1030–1045 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Song, Q.K., Yang, X.J., Li, C.D., Huang, T.W., Chen, X.F.: Stability analysis of nonlinear fractional-order systems with variable-time impulses. J. Franklin Inst. 354(7), 2959–2978 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kneser, A.: Unteruchung und asymptotische darstellung der integrale gewisser differentialgleichungen bei grossen werthen des arguments. J. Reine Angew. Math. 116, 178–212 (1896)

    MathSciNet  MATH  Google Scholar 

  33. Aronszajn, N.: Le correspondant topologique de l’unicité dans la thérie des éuations difféntielles. Ann. Math. 43, 730–738 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  34. De Belasi, F.S., Myjak, J.: On the solutions sets for differential inclusions. Bull. Pol. Acad. Sci. Math. 12, 17–23 (1985)

    MathSciNet  Google Scholar 

  35. Djebali, S., Góniewicz, L., Ouahab, A.: Filippov-Ważwski theorems and structure of solution sets for first order impulsive semilinear functional differential inclusions. Topol. Methods Nonlinear Anal. 32, 261–312 (2008)

    MathSciNet  MATH  Google Scholar 

  36. Graef, J.R., Ouahab, A.: First order impulsive differential inclusions with periodic condition. Electron. J. Qual. Theory Differ. Equ. 31, 1–40 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Graef, J.R., Ouahab, A.: Structure of solutions sets and a continuous version of Filippov’s theorem for first order impulsive differential inclusions with periodic conditions. Electron. J. Qual. Theory Differ. Equ. 24, 1–23 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Djebali, S., Górniewicz, L., Ouahab, A.: First-order periodic impulsive semilinear differential inclusions: existence and structure of solution sets. Math. Comput. Modelling 52, 683–714 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Djebali, S., Górniewicz, L., Ouahab, A.: Topological structure of solution sets for impulsive differential inclusions in Frechet spaces. Nonlinear Anal. 74, 2141–2169 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gabor, G., Grudzka, A.: Structure of the solution sets to impulsive functional differential inclusions on the half-line. Nonlinear Differ. Equ. Appl. 19, 609–627 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Grudzka, A., Ruszkowski, S.: Structure of the solution sets to differential inclusions with impulses at variable times. Electr. J. Differ. Equ 114, 1–16 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Gabor, G.: Differential inclusions with state-dependent impulses on the half-line: new Fréchet space of functions and structure of solution sets. J. Math. Anal. Appl. 446, 1427–1448 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Xiao, J.Z., Zhu, X.H., Cheng, R.: The solution sets of second order semilinear impulsive mutivalued boundary value problems. Comput. Math. Appl. 64, 147–160 (2012)

    Article  MathSciNet  Google Scholar 

  44. Chen, D.H., Wang, R.N., Zhou, Y.: Nonlinear evolution inclusions: topological characterizations of solution sets and applications. J. Funct. Anal. 265, 2039–2073 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhou, Y., Peng, L.: Topological properties of solution sets for partial functional evolution inclusions, C. R. Acad. Sci. Paris, Ser. I, 355(2017) 45–64

  46. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  47. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 24. Elsevier Science B. V, Amsterdam (2006)

    Google Scholar 

  48. Zhou, Y., Wang, J.R., Zhang, L.: Basic Theory of Fractional Differential Equations. World Scientific Publisheing Co. Pte. Ltd, Singapore (2017)

    MATH  Google Scholar 

  49. Benchohr, M., Berhoun, F.: Impulsive fractional differential equations with variable times. Comput. Math. Appl. 59, 1245–1252 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Deimling, K.: Nonlinear Functional Analysis. Springer-Verlag, New York (1985)

    Book  MATH  Google Scholar 

  51. Bothe, D.: Multivalued perturbations of \(m\)-accretive differential inclusions. Israel J. Math. 108, 109–138 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  52. Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  53. Bainov, D., Simeonov, P.S.: Pitman monographs and surveys in pure and applied mathematics, vol. 66. Harlow Longman Scientific & technical, Impulsive Differential Equations, Periodic Solutions and Applications (1993)

  54. Ha, P., Ye, J.M., Gao, Y.S.: Ding; A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, 1075–1081 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Birkhoff, G.: Ordinary Differential Equations, 4th edn. Wiley, Hoboken (1989)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation Project of Universities in Anhui Province(KJ2018A0027). The authors are extremely grateful to the reviewers for their valuable comments and suggestions, which have contributed much to the improved presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Li, X. Structure of the Solution Set to Fractional Differential Inclusions with Impulses at Variable Times on Compact Interval. Qual. Theory Dyn. Syst. 20, 59 (2021). https://doi.org/10.1007/s12346-021-00500-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00500-x

Keywords

Mathematics Subject Classification

Navigation