Skip to main content
Log in

Highly efficient chlorinated solvent uptake by novel covalent organic networks via thiol-ene chemistry

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, we synthesized an aliphatic–aromatic regular network as a novel covalent organic networks called TEPN-1 (Thiol-ene Polymer Network) and TEPN-2 via thiol-ene chemistry. TEPN-1 and TEPN-2 were analyzed by FTIR, 13C-NMR, Brunauer–Emmett–Teller, thermogravimetric analysis and elemental analysis. Solvent uptake capacity of TEPN-1 and TEPN-2 was employed against 26 solvents which are frequently used in chemical industry. It is found that TEPN-1 has the highest swelling adsorption ratio with chloroform and DCM (13.7 and 11.5 g.g−1, respectively), while TEPN-2 has 9.2 and 7.5 g.g−1, respectively. Both TEPN-1 and TEPN-2 have very minimal water uptake (0.165 and 0.189 g.g−1, respectively). TEPN-1 and TEPN-2 are efficient adsorbents for most of organic solvents including water-miscible organic solvents such as THF, dioxane and pyridine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang W, Liu Y, Luo Y, Xie C, Xiang Z, Chen JF (2020) HiGee strategy toward rapid mass production of porous covalent organic polymers with superior methane deliverable capacity. Adv Funct Mater 30:1908079. https://doi.org/10.1002/adfm.201908079

    Article  CAS  Google Scholar 

  2. Furukawa H, Yaghi OM (2009) Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc 131:8875–8883. https://doi.org/10.1021/ja9015765

    Article  CAS  PubMed  Google Scholar 

  3. Patel HA, Je SH, Park J, Chen DP, Jung Y, Yavuz CT, Coskun A (2013) Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers. Nat Commun 4:1357–1364. https://doi.org/10.1038/ncomms2359

    Article  CAS  PubMed  Google Scholar 

  4. Duan K, Wang J, Zhang Y, Liu J (2019) Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation. J Membr Sci 572:588–595. https://doi.org/10.1016/j.memsci.2018.11.054

    Article  CAS  Google Scholar 

  5. Moradihamedani P (2021) Recent advances in dye removal from wastewater by membrane technology: a review. Polym Bull. https://doi.org/10.1007/s00289-021-03603-2

    Article  Google Scholar 

  6. Faghihi K, Soleimani M (2020) Synthesis of new polyester networks containing β-cyclodextrin cavities for removal of paraben derivatives from water resources by inclusion complexes. Polym Bull. https://doi.org/10.1007/s00289-020-03416-9

    Article  Google Scholar 

  7. Kaczmarek AM, Liu YY, Kaczmarek MK, Liu H, Artizzu F, Carlos LD, Der Voort PV (2020) Developing luminescent ratiometric thermometers based on a covalent organic framework (COF). Angew Chem Int Ed 59(5):1932–1940. https://doi.org/10.1002/anie.201913983

    Article  CAS  Google Scholar 

  8. Bildirir H, Gregoriou VG, Avgeropoulos A, Scherf U, Chochos CL (2017) Porous organic polymers as emerging new materials for organic photovoltaic applications: current status and future challenges. Mater Horiz 4:546–556. https://doi.org/10.1039/C6MH00570E

    Article  CAS  Google Scholar 

  9. Shi L, Qi Z, Peng P, Guo J, Wan G, Cao D, Xiang Z (2018) Pyrene-based covalent organic polymers for enhanced photovoltaic performance and solar-driven hydrogen production. ACS Appl Energy Mater 1(12):7007–7013. https://doi.org/10.1021/acsaem.8b01432

    Article  CAS  Google Scholar 

  10. Bhunia S, Deo KA, Gaharwar AK (2020) 2D Covalent organic frameworks for biomedical applications. Adv Funct Mater 30:2002046. https://doi.org/10.1002/adfm.202002046

    Article  CAS  Google Scholar 

  11. Dursun S, Yavuz E, Cetinkaya Z (2019) In situ reduction of chloroauric acid (HAuCl4) for generation of catalytic Au nanoparticle embedded triazine based covalent organic polymer networks. RSC Adv 9:38538–38546. https://doi.org/10.1039/C9RA08822A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Patel HA, Yavuz MS, Yavuz CT (2014) Exceptional organic solvent uptake by disulfidelinked polymeric networks. RSC Adv 4:24320–24323. https://doi.org/10.1039/C4RA03355H

    Article  CAS  Google Scholar 

  13. Atas MS, Dursun S, Akyildiz H, Citir M, Yavuz CT, Yavuz MS (2017) Selective removal of cationic micro-pollutants using disulfide-linked network structures. RSC Adv 7:25969–25977. https://doi.org/10.1039/c7ra04775d

    Article  CAS  Google Scholar 

  14. Assaifan AK, Aijaz MO, Luqman M, Drmosh QA, Karim MR, Alharbi HF (2021) Removal of cadmium ions from water using coaxially electrospun PAN/ZnO-encapsulated PVDF nanofiber membranes. Polym Bull. https://doi.org/10.1007/s00289-021-03657-2

    Article  Google Scholar 

  15. Ulasan M, Yavuz E, Cengeloglu Y, Yavuz MS (2015) Facile synthesis of boronic acid-functionalized nanocarriers for glucose-triggered caffeic acid release. Polym Bull 72:2127–2142. https://doi.org/10.1007/s00289-015-1393-5

    Article  CAS  Google Scholar 

  16. Wen J, Dong H, Zeng G (2018) Application of zeolite in removing salinity/sodicity from wastewater: a review of mechanisms, challenges and opportunities. J Clean Prod 197:1435–1446. https://doi.org/10.1016/j.jclepro.2018.06.270

    Article  CAS  Google Scholar 

  17. Liu X, Tian J, Li Y, Sun N, Mi S, Xie Y, Chen Z (2019) Enhanced dyes adsorption from wastewater via Fe3O4 nanoparticles functionalized activated carbon. J Hazardous Mater 373:397–407. https://doi.org/10.1016/j.jhazmat.2019.03.103

    Article  CAS  Google Scholar 

  18. De Oliveira T, Boussafir M, Fougère L, Destandau E, Sugahara Y, Guégan R (2020) Use of a clay mineral and its nonionic and cationic organoclay derivatives for the removal of pharmaceuticals from rural wastewater effluents. Chemosphere 259:127480. https://doi.org/10.1016/j.chemosphere.2020.127480

    Article  CAS  PubMed  Google Scholar 

  19. Drout RJ, Robison L, Chen Z, Islamoglu T, Farha OK (2019) Zirconium metal-organic frameworks for organic pollutant adsorption. Trends Chem 1(3):304–317. https://doi.org/10.1016/j.trechm.2019.03.010

    Article  CAS  Google Scholar 

  20. Ono T, Sugimoto T, Shinkai S, Sada K (2008) Molecular design of superabsorbent polymers for organic solvents by crosslinked lipophilic polyelectrolytes. Adv Funct Mater 18:3936–3940. https://doi.org/10.1002/adfm.200801221

    Article  CAS  Google Scholar 

  21. Xue ZX, Sun ZX, Cao YZ, Chen YN, Tao L, Li K, Feng L, Fu Q, Wei Y (2013) Superoleophilic and superhydrophobic biodegradable material with porous structures for oil absorption and oil–water separation. RSC Adv 3:23432–23437. https://doi.org/10.1039/C3RA41902A

    Article  CAS  Google Scholar 

  22. Sonmez HB, Wudl F (2005) Cross-linked poly(orthocarbonate)s as organic solvent sorbents. Macromolecules 38:1623–1626. https://doi.org/10.1021/ma048731x

    Article  CAS  Google Scholar 

  23. Raina N, Rani R, Khan A, Nagpal K, Gupta M (2020) Interpenetrating polymer network as a pioneer drug delivery system: a review. Polym Bull 77:5027–5050. https://doi.org/10.1007/s00289-019-02996-5

    Article  CAS  Google Scholar 

  24. Marci G, Mele G, Palmisano L, Pulito P, Sannino A (2006) Environmentally sustainable production of cellulose-based superabsorbent hydrogels. Green Chem 8:439–444. https://doi.org/10.1039/B515247J

    Article  CAS  Google Scholar 

  25. Naga N, Inose D, Ishida T, Kubota K, Nageh H, Nakano T (2020) Synthesis of polymer networks by means of addition reactions of tri-amine and poly(ethylene glycol) diacrylate or diglycidyl ether compounds. Polym Bull 78:2745–2763. https://doi.org/10.1007/s00289-020-03241-0

    Article  CAS  Google Scholar 

  26. Savin CL, Peptu C, Kroneková Z, Sedlačík M, Mrlik M, Sasinková V, Peptu CA, Popa M, Mosnáček J (2018) Polyglobalide-based porous networks containing poly(ethylene glycol) structures prepared by photoinitiated thiol-ene coupling. Biomacromol 19:3331–3342. https://doi.org/10.1021/acs.biomac.8b00634

    Article  CAS  Google Scholar 

  27. Chen C, Eissa AM, Schiller TL, Cameron NR (2017) Emulsion-templated porous polymers prepared by thiol-ene and thiol-yne photopolymerisation using multifunctional acrylate and non-acrylate monomers. Polymer 126:395–401. https://doi.org/10.1016/j.polymer.2017.04.021

    Article  CAS  Google Scholar 

  28. Khire VS, Lee TY, Bowman CN (2007) Surface modification using thiol-ene and thiol-acrylate polymerizations. Macromolecules 40(16):5669–5677. https://doi.org/10.1021/ma070146j

    Article  CAS  Google Scholar 

  29. Hoyle CE, Lee TY, Roper T (2004) Thiol–ene: chemistry of the past with promise for the future. J Polym Sci Part A, Polym Chem 42:5301–5338. https://doi.org/10.1002/pola.20366

    Article  CAS  Google Scholar 

  30. Hoyle CE, Bowman CN (2010) Thiol-ene click chemistry. Angew Chem Int Ed 49:1540–1573. https://doi.org/10.1002/anie.200903924

    Article  CAS  Google Scholar 

  31. Law RV, Sherrington DC, Snape CE (1997) Quantitative solid state 13C NMR studies of highly cross-linked poly(divinylbenzene) resins. Macromolecules 30:2868–2875. https://doi.org/10.1021/ma9616470

    Article  CAS  Google Scholar 

  32. Tanaka S, Matsumoto M, Goseki R, Ishizone T, Hirao A (2013) Living anionic polymerization of 1,4-divinylbenzene and its isomers. Macromolecules 46:146–154. https://doi.org/10.1021/ma302246u

    Article  CAS  Google Scholar 

  33. Cheng C, Zhang X, Chen X, Li J, Huang Q, Hu Z, Tu Y (2016) Self-healing polymers based on eugenol via combination of thiol-ene and thiol oxidation reactions. J Polym Res 23:110–121. https://doi.org/10.1007/s10965-016-1001-x

    Article  CAS  Google Scholar 

  34. Lazauskas A, Jucius D, Baltrušaitis V, Gudaitis R, Prosycevas I, Abakeviciene B, Guobiene A, Andrulevicius M, Grigaliunas V (2019) Shape-memory assisted scratch-healing of transparent thiol-ene coatings. Materials 12:482–494. https://doi.org/10.3390/ma12030482

    Article  CAS  PubMed Central  Google Scholar 

  35. Miao JT, Yuan L, Guan Q, Liang G, Gu A (2018) Water-phase synthesis of a biobased allyl compound for building UV-curable flexible thiol-ene polymer networks with high mechanical strength and transparency. ACS Sustain Chem Eng 6:7902–7909. https://doi.org/10.1021/acssuschemeng.8b01128

    Article  CAS  Google Scholar 

  36. Long TR, Gupta A, Miller AL, Rethwisch DG, Bowden NB (2011) Selective flux of organic liquids and solids using nanoporous membranes of polydicyclopentadiene. J Mater Chem 21:14265–14276. https://doi.org/10.1039/C1JM10970G

    Article  CAS  Google Scholar 

  37. Zhou Y, Zhou L, Zhang X, Chen Y (2016) Preparation of zeolitic imidazolate framework-8/graphene oxide composites with enhanced VOCs adsorption capacity. Microporous Mesoporous Mater 225:488–493. https://doi.org/10.1016/j.micromeso.2016.01.047

    Article  CAS  Google Scholar 

  38. Belal AS, Khalil MMA, Soliman M, Ebrahim S (2020) Novel superhydrophobic surface of cotton fabrics for removing oil or organic solvents from contaminated water. Cellulose 27:7703–7719. https://doi.org/10.1007/s10570-020-03316-1

    Article  CAS  Google Scholar 

  39. Gil-Ramirez G, Escudero-Adan EC, Benet-Buchholz J, Ballester P (2008) Quantitative evaluation of anion- π interactions in solution. Angew Chem Int Ed 47:4114–4118. https://doi.org/10.1002/anie.200800636

    Article  CAS  Google Scholar 

  40. Ran J, Hobza P (2009) On the nature of bonding in lone pair π-electron complexes: CCSD(T)/complete basis set limit calculations. Chem Eur J 5(4):1180–1185. https://doi.org/10.1021/ct900036y

    Article  CAS  PubMed  Google Scholar 

  41. Frontera A, Gamez P, Mascal M, Mooibroek TJ, Reedijk J (2011) Putting anion–π interactions into perspective. Angew Chem Int Ed 50:9564–9583. https://doi.org/10.1002/anie.201100208

    Article  CAS  Google Scholar 

  42. Richardson SD (2012) Environmental mass spectrometry: emerging contaminants and current issues. Anal Chem 84(2):747–778. https://doi.org/10.1021/ac202903d

    Article  CAS  PubMed  Google Scholar 

  43. Mahendra S, Alvarez-Cohen L (2006) Kinetics of 1,4-dioxane biodegradation by monooxygenase-expressing bacteria. Environ Sci Technol 40(17):5435–5442. https://doi.org/10.1021/es060714v

    Article  CAS  PubMed  Google Scholar 

  44. Li M, Fiorenza S, Chatham JR, Mahendra S, Alvarez PJJ (2010) 1,4-dioxane biodegradation at low temperatures in arctic groundwater samples. Water Res 44(9):2894–2900. https://doi.org/10.1016/j.watres.2010.02.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by TUBITAK (Project No.112M096, COST TD1004). The authors also thank to Semra Filikci and Mehmet Ulasan for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Selman Yavuz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavuz, M.S., Citir, M. Highly efficient chlorinated solvent uptake by novel covalent organic networks via thiol-ene chemistry. Polym. Bull. 79, 6343–6356 (2022). https://doi.org/10.1007/s00289-021-03809-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03809-4

Keywords

Navigation