Skip to main content
Log in

Constant Components of the Mertens Function and Its Connections with Tschebyschef’s Theory for Counting Prime Numbers

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

In this note we exhibit some large sets \(\varTheta _x \subset \{1, 2, \ldots , \lfloor x \rfloor \}\) such that the sum of the Möbius function over \(\varTheta _x\) is small and independent of x. We show that the existence of some of these sets are intimately connected with the existence of the alternating series used by Tschebyschef and Sylvester to bound the prime counter function \(\varPi (x)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alkan, E.: Ramanujan sums and the Burgess zeta function. Int. J. Number Theory 8, 2069–2092 (2012)

    Article  MathSciNet  Google Scholar 

  • Alkan, E.: Biased behavior of weighted Mertens sums On sums over the Möbius function and discrepancy of fractions. Int. J. Number Theory 16(3), 547–577 (2020a)

    Article  MathSciNet  Google Scholar 

  • Alkan, E.: Inequalities between sums over prime numbers in progressions. Res. Number Theory 6(3), 36 (2020b)

    Article  MathSciNet  Google Scholar 

  • Alkan, E., Haydar, G.: On sums over the Möbius function and discrepancy of fractions. J. Number Theory 133, 2217–2239 (2013)

    Article  MathSciNet  Google Scholar 

  • Cohen, H., Dress, F., Marraki, M.E.: Explicit estimates for summatory functions linked to the Möbius \(\mu \) function. Funct. Approx. Comment. Math. 39(1), 51–63 (2007)

    MATH  Google Scholar 

  • Diamond, H.G., Erdös, P.: On sharp elementary prime number estimates. Enseign. Math. 26, 313–321 (1980)

    MathSciNet  MATH  Google Scholar 

  • Diamond, H.G.: Elementary methods in the study of the distribution of prime numbers. Bull. Am. Math. Soc. 7(3), 553–589 (1982)

    Article  MathSciNet  Google Scholar 

  • Knapowski, S., Turán, P.: Further developments in comparative number theory I. Acta Arith. IX, 23–40 (1964)

    Article  MathSciNet  Google Scholar 

  • Landau, E.: Elementary Number Theory. Chelsea Publishing Company, New York (1958)

    MATH  Google Scholar 

  • MacLeod, R.A.: A new estimate for the sum \(M(x) = \sum \limits _{n \le x} \mu (n)\). Acta Arith. XIII, 49–59 (1967)

    Article  Google Scholar 

  • Ng, N.: The distribution of the summatory function of the Möbius function. Proc. Lond. Math. Soc. 89(2004), 361–389 (2004)

    Article  Google Scholar 

  • Odlysco, A.M., Riele, H.T.: Disproof of the Mertens conjecture. J. Reine Angew. Math. 357, 138–160 (1985)

    MathSciNet  MATH  Google Scholar 

  • Rubinstein, M., Sarnak, P.: Chebyshev’s bias. Experiment. Math. 3(3), 173–197 (1994)

    Article  MathSciNet  Google Scholar 

  • Sylvester, J.J.: On Tchebycheff’s theory of the totality of the prime numbers comprised within given limits. Am. J. Math. IV, 230–247 (1881)

    Article  MathSciNet  Google Scholar 

  • Sylvester, J.J.: The Collected Mathematical Papers of James Joseph Sylvester, vol. IV. Cambridge University Press, London (1912)

    Google Scholar 

  • Titchmarsh, E.C.: The Theory of the Riemann Zeta Function. Oxford University Press, New York (1988)

    Google Scholar 

  • Tschebyschef, P.L.: Mémoire sur les nombres premiers. J. Math. Pures Appl. 17, 366–390 (1852)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Pierro de Camargo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camargo, A.P.d., Martin, P.A. Constant Components of the Mertens Function and Its Connections with Tschebyschef’s Theory for Counting Prime Numbers. Bull Braz Math Soc, New Series 53, 501–522 (2022). https://doi.org/10.1007/s00574-021-00267-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-021-00267-4

Keywords

Navigation