Skip to main content
Log in

Water diffusivity transition in fumed silica-filled polydimethylsiloxane composite: Correlation with the interfacial free volumes characterized by positron annihilation lifetime spectroscopy

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fumed silica (FS)-filled polydimethylsiloxane (PDMS) composite is widely used as the external insulating material in power grid. The function of PDMS composite is to keep the core of an insulation device being dry by preventing the permeation of outside water. To study water diffusion in PDMS composite helps to shed light upon the failure mechanism of the insulation devices. In this paper, positron annihilation lifetime spectroscopy (PALS) and electrochemical impedance spectroscopy (EIS) were applied to study the FS/PDMS interface structure and water diffusion in PDMS composite. It is found that the FS has two basic existing states in PDMS matrix: dispersed state and percolated state, and the percolation threshold of FS is fitted to be 6.0 wt.%. In the dispersed state, the FS particles are randomly dispersed in PDMS matrix. The values of \(\tau _3\) remain stable, being approximately 1.0 ns, indicating no overlaps of the FS/PDMS interfaces. Moreover, water cannot diffuse through the sample after corona aging. In the percolated state, the FS particles are tightly packed in the PDMS matrix. The values of \(\tau _3\) decrease with the weight fraction of FS, suggesting the overlapping of the FS/PDMS interfaces. As the FS percolates in sample bulk, these overlapped FS/PDMS interfaces provide continuous diffusion tunnels for water, thus resulting in failure of the composite after corona aging. It is found that polarization and discharge of the electrons at FS/PDMS interface under corona discharge is the main mechanism that leads to the failure of the composite bulk.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Gorur RS, Karady GG, Jagota A, Shah M, Yates AM (1992) Aging in silicone rubber used for outdoor insulations. IEEE Trans Power Deliv 7(2):525–538

    CAS  Google Scholar 

  2. Kumosa M, Narayan HS, Qiu Q, Bansal A (1997) Brittle fracture of non-ceramic suspension insulators with epoxy cone end-fittings. Compos Sci Technol 57(7):739–751

    Google Scholar 

  3. Kaali P, Momcilovic D, Markström A, Aune R, Czel G, Karlsson S (2010) Degradation of biomedical polydimethylsiloxanes during exposure to in vivo biofilm environment monitored by FE-SEM, ATR-FTIR, and MALDI-TOF MS. J Appl Polym Sci 115(2):802–810

    CAS  Google Scholar 

  4. Yamamoto T (2011) Study on 172-nm vacuum ultraviolet light surface modifications of polydimethylsiloxane for micro/nanofluidic applications. Surf Interface Anal 43(9):1271–1276

    CAS  Google Scholar 

  5. Hillborg H, Gedde UW (1999) Hydrophobicity changes in silicone rubbers. IEEE Trans.Dielectr Electr Insul 6(5):703–717

    CAS  Google Scholar 

  6. Wang Z, Luo Y, Zheng F, Zhang N, Yin C, Li J, He C, Peng X, Huang Z, Fang P (2018) Study on surface structure of plasma-treated polydimethylsiloxane (PDMS) elastomer by slow positron beam. Surf Interface Anal 50(8):819–826

    CAS  Google Scholar 

  7. Zhu Y, Otsubo M, Honda C, Tanaka S (2006) Loss and recovery in hydrophobicity of silicone rubber exposed to corona discharge. Polym Degrad Stab. 91(7):1448–1454

    CAS  Google Scholar 

  8. Gao Y, Liang X, Bao W, Li S, Wu C (2018) Failure analysis of a field brittle fracture composite insulator: characterization by FTIR analysis and fractography. IEEE Trans Dielectr Electr Insul 25(3):919–927

    CAS  Google Scholar 

  9. Gao Y, Liang X, Liu Y, Bao W, Li S, Wu C (2018) Effect of electrical stress on glass fiber reinforced polymer used in high voltage composite insulator under wet environment. Compos Sci Technol 155:151–159

    CAS  Google Scholar 

  10. Dai J, Yao XF, Yeh HY, Liang X (2006) Moisture absorption of filled silicone rubber under electrolyte. J Appl Polym Sci 99(5):2253–2257

    CAS  Google Scholar 

  11. Cheng L, Wang L, Guan Z, Zhang F (2016) Aging characterization and lifespan prediction of silicone rubber material utilized for composite insulators in areas of atypical warmth and humidity. IEEE Trans Dielectr Electr Insul 23(6):3547–3555

    CAS  Google Scholar 

  12. Lutz B, Guan Z, Wang L, Zhang F, Lü Z (2012) In: 2012 IEEE International symposium on electrical insulation, pp. 478–482

  13. Wang Z, Jia ZD, Fang MH, Li YS, Guan ZC (2016) Moisture absorption, desorption, and moisture-induced electrical performances of high-temperature vulcanized silicone rubber. IEEE Trans Dielectr Electr Insul 23(1):410–417

    CAS  Google Scholar 

  14. Mavrikakis NC, Mikropoulos PN, Siderakis K (2017) Evaluation of field-ageing effects on insulating materials of composite suspension insulators. IEEE Trans Dielectr Electr Insul 24(1):490–498

    Google Scholar 

  15. Wang Z, Jia ZD, Fang MH, Guan ZC (2015) Absorption and permeation of water and aqueous solutions of high-temperature vulcanized silicone rubber. IEEE Trans Dielectr Electr Insul 22(6):3357–3365

    CAS  Google Scholar 

  16. Ali M, Hackam R (2008) Effects of saline water and temperature on surface properties of HTV silicone rubber. IEEE Trans Dielectr Electr Insul 15(5):1368–1378

    CAS  Google Scholar 

  17. Ali M, Hackam R (2009) Recovery of hydrophobicity of HTV silicone rubber after accelerated aging in saline solutions. IEEE Trans Dielectr Electr Insul 16(3):842–852

    CAS  Google Scholar 

  18. Wang Z, Yin C, Li J, Yang Y, Chen L, Luo Y, Liu Y, He C, Fang P (2018) Electrochemical impedance study of water transportation in corona-aged silicone rubber: effect of applied voltage. J Mater Sci 53:12871–12884.https://doi.org/10.1007/s10853-018-2523-x

    Article  CAS  Google Scholar 

  19. Wang Z, Li J, Zhou Y, Zhang N, He C, Peng X, Huang Z, Cao X, Wang B, Fang P (2019) Investigation of the surface microstructure evolution of silicone rubber during corona discharge via slow positron beam and electrochemical impedance spectroscopy. Plasma Process Polym 16(8):1900057

    Google Scholar 

  20. Dreiss CA, Cosgrove T, Benton NJ, Kilburn D, Alam MA, Schmidt RG, Gordon GV (2007) Effect of crosslinking on the mobility of PDMS filled with polysilicate nanoparticles: positron lifetime, rheology and NMR relaxation studies. Polymer 48(15):4419–4428

    CAS  Google Scholar 

  21. Tanaka T, Kozako M, Fuse N, Ohki Y (2005) Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans Dielectr Electr Insul 12(4):669–681

    CAS  Google Scholar 

  22. Zhang PH, Zhang WG, Liu Y, Fan Y, Lei QQ (2003) In: Proceedings of the 7th international conference on properties and applications of dielectric materials. 3, pp. 1138–1141

  23. Zhang MY, Chu Y, Fan Y, Lei QQ (2003) In: Proceedings of the 7th international conference on properties and applications of dielectric materials, 2, pp. 753–756

  24. Wang B, Gong W, Liu W, Wang Z, Qi N, Li X, Liu M, Li S (2003) Influence of physical aging and side group on the free volume of epoxy resins probed by positron. Polymer 44(14):4047–4052

    CAS  Google Scholar 

  25. Wang SJ, Wang CL, Zhu XG, Qi ZN (1994) Structural characteristics of HDPE/CaCO\(_3\) polymer composites probed by positron annihilation. Physica Status Solidi (a) 142(1):275–280

    CAS  Google Scholar 

  26. Jean YC (1990) Positron annihilation spectroscopy for chemical analysis: a novel probe for microstructural analysis of polymers. Microchem J 42:72–102

    CAS  Google Scholar 

  27. Jean Y, Mallon P, Zhang R, Chen H, Li Y, Zhang J, Wu Y, Sandreczki T, Suzuki R, Ohdaira T et al (2003) Positron studies of polymeric coatings. Radiat Phys Chem 68(3):395–402

    CAS  Google Scholar 

  28. Schultz PJ, Lynn KG (1988) Interaction of positron beams with surfaces, thin films, and interfaces. Rev Mod Phys 60(3):701–779

    CAS  Google Scholar 

  29. He C, Shantarovich V, Suzuki T, Stepanov S, Suzuki R, Matsuo M (2005) Mechanism of enhanced positronium formation in low-temperature polymers. J Chem Phys 122(21):214907

    Google Scholar 

  30. Yin C, Li J, Zhou Y, Zhang H, Fang P, He C (2018a) Phase separation and development of proton transport pathways in metal oxide nanoparticle/nafion composite membranes during water uptake. J Phys Chem C 122(17):9710–9717

    CAS  Google Scholar 

  31. Consolati G, Nichetti D, Quasso F (2016) Constraints and thermal expansion of the free volume in a micro-phase separated poly(ester-adipate)urethane. J Polym Sci Part B: Polym Phys 54(20):2104–2109

    CAS  Google Scholar 

  32. Tao SJ (1972) Positronium annihilation in molecular substances. J Chem Phys 56(11):5499–5510

    CAS  Google Scholar 

  33. Kirkegaard P, Eldrup M, Mogensen OE, Pedersen NJ (1981) Program system for analysing positron lifetime spectra and angular correlation curves. Comput Phys Commun 23:307–335

    CAS  Google Scholar 

  34. Rath SK, Sharma SK, Sudarshan K, Chavan JG, Patro TU, Pujari PK (2016) Subnanoscopic inhomogeneities in model end-linked PDMS networks probed by positron annihilation lifetime spectroscopy and their effects on thermomechanical properties. Polymer 101(28):358–369

    CAS  Google Scholar 

  35. Merkel TC, He Z, Pinnau I, Freeman BD, Meakin P, Hill AJ (2003) Effect of nanoparticles on gas sorption and transport in poly(1-trimethylsilyl-1-propyne). Macromolecules 36(18):6844–6855

    CAS  Google Scholar 

  36. Madani MM, MacQueen RC, Granata RD (1996) Positron annihilation lifetime study of PTFE/silica composites. J Polym Sci Part B: Polym Phys 34(16):2767–2770

    CAS  Google Scholar 

  37. Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Meakin P, Hill AJ (2003) Sorption, transport, and structural evidence for enhanced free volume in poly(4-methyl-2-pentyne)/fumed silica nanocomposite membranes. Chem Mater 15(1):109–123

    CAS  Google Scholar 

  38. Wang Z, Yin C, Luo Y, Chen L, Zhou Y, He C, Fang P, Peng X, Huang Z (2018) Effect of aluminum hydroxide on low-molecular-weight siloxane distribution and microstructure of high-temperature vulcanized silicone rubber. J Appl Polym Sci 135(6):45803

    Google Scholar 

  39. Berrod G, Vidal A, Papirer E, Donnet JB (1981) Reinforcement of siloxane elastomers by silica. Chemical interactions between an oligomer of poly(dimethylsiloxane) and a fumed silica. J Appl Polym Sci 26(3):833–845

    CAS  Google Scholar 

  40. Berrod G, Vidal A, Papirer E, Donnet JB (1979) Reinforcement of siloxane elastomers by silica. interactions between an oligomer of poly(dimethylsiloxane) and a fumed silica. J Appl Polym Sci 23(9):2579–2590

    CAS  Google Scholar 

  41. Lue SJ, Lee DT, Chen JY, Chiu CH, Hu CC, Jean Y, Lai JY (2008) Diffusivity enhancement of water vapor in poly(vinyl alcohol)-fumed silica nano-composite membranes: Correlation with polymer crystallinity and free-volume properties. J Membr Sci 325(2):831–839

    CAS  Google Scholar 

  42. Liao KS, Chen H, Awad S, Yuan JP, Hung WS, Lee KR, Lai JY, Hu CC, Jean YC (2011) Determination of free-volume properties in polymers without orthopositronium components in positron annihilation lifetime spectroscopy. Macromolecules 44(17):6818–6826

    CAS  Google Scholar 

  43. Mallon PE, Greyling CJ, Vosloo W, Jean YC (2003) Positron annihilation spectroscopy study of high-voltage polydimethylsiloxane (PDMS) insulators. Radiat Phys Chem 68(3–4):453–456

    CAS  Google Scholar 

  44. Liu F, Yin M, Xiong B, Zheng F, Mao W, Chen Z, He C, Zhao X, Fang P (2014) Evolution of microstructure of epoxy coating during UV degradation progress studied by slow positron annihilation spectroscopy and electrochemical impedance spectroscopy. Electrochim Acta 133:283–293

    CAS  Google Scholar 

  45. Fárnandez-Sánchez C, Mcneil CJ, Rawson K (2005) Electrochemical impedance spectroscopy studies of polymer degradation: application to biosensor development. Trends Anal Chem 24(1):37–48

    Google Scholar 

  46. Liu J, Chen Z, Yao L, Wang S, Huang L, Dong C, Niu L (2019) The 2d platelet confinement effect on the membrane hole structure probed by electrochemical impedance spectroscopy. Electrochem Commun 106:106517

    CAS  Google Scholar 

  47. Murray JN (1997) Electrochemical test methods for evaluating organic coatings on metals: an update. Part III: Multiple test parameter measurements. Prog Org Coat 31(3):255–264

    CAS  Google Scholar 

  48. Senkevich JJ (2000) Degradation of an alkyd polymer coating characterized by AC impedance. J Mater Sci 35:1359–1364. https://doi.org/10.1023/A:1004730006941

    Article  CAS  Google Scholar 

  49. Hsu CH, Mansfeld F (2001) Technical note: concerning the conversion of the constant phase element parameter Y\(_{0}\) into a capacitance. Corrosion 57(9):747–748

    CAS  Google Scholar 

  50. Zhang JT, Hu JM, Zhang JQ, Cao CN (2004) Studies of impedance models and water transport behaviors of polypropylene coated metals in NaCl solution. Prog Org Coat 49(4):293–301

    CAS  Google Scholar 

  51. Liu B, Li Y, Lin H, Cao C (2002) Effect of PVC on the diffusion behaviour of water through alkyd coatings. Corros Sci 44(12):2657–2664

    CAS  Google Scholar 

  52. Zhang H, Zheng W, Yan Q, Yang Y, Wang J, Lu Z, Ji G, Yu Z (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5):1191–1196

    CAS  Google Scholar 

  53. Yin C, Li J, Zhou Y, Zhang H, Fang P, He C (2018b) Enhancement in proton conductivity and thermal stability in nafion membranes induced by incorporation of sulfonated carbon nanotubes. ACS Appl Mater Interfaces 10(16):14026–14035

    CAS  Google Scholar 

  54. Saberi AA (2015) Recent advances in percolation theory and its applications. Phys Rep 578:1–32

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2019YFA0210003), the Science and Technology Project of China Southern Power Grid Co., Ltd. (No. GDKJXM20200403), and open fund of the Guangdong Key Laboratory of Electric Power Equipment Reliability in 2020 (No. GDDKY2020KF01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangyang Peng, Chunqing He or Pengfei Fang.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 955 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yang, Y., Peng, X. et al. Water diffusivity transition in fumed silica-filled polydimethylsiloxane composite: Correlation with the interfacial free volumes characterized by positron annihilation lifetime spectroscopy. J Mater Sci 56, 3095–3110 (2021). https://doi.org/10.1007/s10853-020-05465-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05465-x

Navigation